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ABSTRACT

Nanoscale electronic devices are of great intdogsall kinds of applications like switching,
energy conversion and sensing. The objective of thapter, however, is not to discuss
specific devices or applications. Rather it is tmwey the conceptual framework that has
emerged over the last twenty years, which is ingmarinot only because of the practical
insights it provides into the design of nanoscaicks, but also because of the conceptual
insights it affords regarding the meaning of regise and the essence of all non-equilibrium
phenomena in general. We present a unified degmrippplicable to a wide variety of devices
from molecular conductors to carbon nanotubes ligosi transistors covering different
transport regimes from the ballistic to the difftesilimit, based on what we call the NEGF-
Landauer approach.

1. INTRODUCTION

Since “everyone” has a computer these days and/ emnputer has nearly a billion Field
Effect Transistors (FET’s) working in concert, gesns safe to say that the most common
electronic device is an FET, which is basicallyeaistor consisting of an active region called
the channel with two very conductive contacts @two ends called the source and the drain
(Fig.1). What makes it more than just a resistdhesfact that a fraction of a volt applied to a
third terminal called the gate changes the resistdény several orders of magnitude. Electrical
switches like this are at the heart of any compatet what has made computers more and
more powerful each year is the increasing numbematiches that have been packed into one
by making each switch smaller and smaller. For gtara typical FET today has a channel
length (L) of ~ 50 nm, which amounts to a few hudda&oms!

Nanoscale electronic devices have not only enatglature switches for computers
but are also of great interest for all kinds of laggtions including energy conversion and
sensing. The objective of this chapter, howeverndd to discuss specific devices or
applications. Rather it is to convey the concepftahework that has emerged over the last
twenty years, which is important not only becaulsthe practical insights it provides into the
design of nanoscale devices, but also becauseeofahceptual insights it affords regarding
the meaning of resistance and the essence ofrakquilibrium phenomena in general.
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Fig.1: Schematic representing a Field Effect Trstosi (FET), which consists of a channel
with two contacts (labeled “source” and “drain”)h@se resistance R can be controlled
through a voltage V applied to a third terminaldigal the “gate”, which ideally carries
negligible current.
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Fig.2: As the length “L” of the channel in Fig.1rsduced the nature of electronic transport
from one contact to the other changes qualitatiietyn diffusive to ballistic to
quantum.



This new conceptual framework provides a unifiedatiption for all kinds of devices
from molecular conductors to carbon nanotubes ligosi transistors covering different
transport regimes from the diffusive to the ballidimit (Fig.2). As the channel length L is
reduced, the nature of electronic transport chaggastatively. With long channels, transport
is diffusive, meaning that the electron gets from one contaanbther via a random walk, but
as the channel length is reduced below a mean datle, transport becomdsallistic, or
“bullet-like”. At even shorter lengths the wave una of electrons can lead goantum effects
such as interference and tunneling. Historically mnderstanding of electrical resistance and
conduction has progressedp-down: from large macroscopic conductors to small atomic
scale conductors. Indeed thirty years ago it wasngon to argue about what, if anything, the
concept of resistance meant on an atomic scalee $iten there has been significant progress
in our understanding, spurred by actual experimemiasurements made possible by the
technology of miniaturization. However, despitestiprogress in understanding the flow of
current on an atomic scale, the standard approadhet problem of electrical conduction
continues to be top-down rather than bottom-ups Timkes the problem of nanoscale devices
appear unduly complicated, as we have argued exéin$Datta 2005, 2008]. The purpose of
this chapter is to summarize a unifibdttom-up viewpoint to the subject of electrical
conduction of particular relevance to nanoelectrai@vices.

The viewpoint we wish to discuss is summarizetrimm3a: Any nanoelectronic device
has an active “channel” described by a Hamiltorilghwhich also includes any potential U
due to other charges, external (on the electroalesiternal (within the channel). The channel
communicates with the source and drain (and anttiaddl contacts) that are maintained in
local equilibrium with specified electrochemicaltpiotials. The communication between the
channel and the contacts is described by the selfgg matrices ¥;] and [Z,] [Caroli et al.
1972). Finally there is a self-energy matriX] describing the interaction of an individual
electron with its surroundings, which unlik&[,] has to be calculated self-consistently. Each
of these quantities is a matrix whose dimensionNNxlepends on the number of basis
functions (N) needed to represent the channel. iHmse matrices are written down varies
widely from one material to another and from onprapch (semi-empirical or first principles)
to another. But once these matrices have beerewritbwn, the procedure for calculating the
current and other quantities of interest is the esaamnd in this chapter we will stress this
generic procedure along with its conceptual unaerpgs.

The schematic model of Fig.3a includes both tH&uslve (Fig.3b) and the ballistic
(Figure 1.3c) limits as special cases. In the &t#dlilimit, the flow of electrons is controlled by
the contact terms2;] and [%,], while the interactions within the channel argligble. By
contrast, in the diffusive limit, the flow of eleans is controlled by the interactions within the
channel described by2L] and the role of contactsXj] and [Z,]) is negligible. Indeed prior
to 1990, theorists seldom bothered even to drawctimeacts. Note that there is an important
distinction between the Hamiltonian matrix [H] atlte self-energy matriceszj ,s]. The
former is Hermitian representing conservative dywaimforces, while the latter is non-
Hermitian and helps account for the “entropic fefceLet me elaborate a little on what |
mean by this term.
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Fig.3(a): Schematic representing the general appraaed to model nanoscale devices: The

channel is described by a Hamiltonian [H] while t@mmunication between the
channel and the contacts is described by the melfgg matrices ;] and [%,].
The self-energy matrixJs] describes the interaction of an individual elentwith
its surroundings. (b) In traditional long devicessicommon to ignore the contacts,
while (c) in the coherent limit a “Landauer modefieglecting incoherent
interactions within the channel is more appropr{atgapted from Datta 2005).



Consider a simple system like a hydrogen atom Igaivilo energy levels separated by an
energyé& — & that is much larger than the thermal enéggy (Fig.4). We all know that an

electron initially in the upper leves, will lose energy, possibly by emitting a photongdand

up in the lower levels, but an electron initially in the lower leve] will stay there forever.
Why? This tendency of all systems to relax unidice@lly to the lowest energy is considered
S0 “obvious” that only a beginning student wouletevaise the question. But it is important
to recognize that this property does not follownirthe Schrodinger equation. Hamiltonians

are always Hermitian Witﬂ'le‘ = ‘Hzﬂ. Any perturbation that takes a system fregnto &

will also take it fromg& to &. The unidirectional transfer frorg, to & is the result of an
entropic force that can be understood by noting) dlia system is in contact with a reservoir
having an enormous density of stat®s(E;) that is a function of the reservoir energy
[Feynman 1972]. Using & denote the total energy of the reservoir plesdistem, we can
write the reservoir density of states@s(E —&) and D, (E —&) corresponding to the system
energy levelss and & respectively (Fig.4).

Fig.4: A system with two energy levelg] D (E -¢)
and [&], coupled to a reservoir&
whose corresponding density of

states are D, (E-g) and ;
Dy (E-&). The downward
transition rate frome, to & far o

exceeds the upward transition rate
g to & although the Schrodinger,
equation would have predicted them
to be equal. The unidirectionality
arises from entropic forces as
discussed in the text.
The ratio of the downward to the upward transitiate is given by

Ro1_ Di(E-&)
R.> D(E-&)

D (E-¢)

Why is the downward rate far greater that the upwate: R,_1>>R_»? Simply because for
all normal reservoirs, the density of states isnamneasing function of the reservoir energy so
that with (E-&§)>>(E-&), we have Q(E-§)>>D(E-&). We call this an entropic force
because the density of states is related to theomntthrough the Boltzmann relation
(S=kg InQ):

D (E-&) zexp(S(E—el)—S(E—ez)J :exp(@—el d_sj
Dr(E—fz) kB kB dE



Noting that the temperature T is defined as 10SAE, we can write

R_1_D(E-&) =exp(£2_£1j (1)
R_2 D(E-&) kgT

so that with& —g >>kgT, RB_1>>R_, and the system relaxes to the lower energy as
“everyone” knows.

The point | am trying to make is that the Schrgdmequation alone is not enough even
to describe this elementary behavior that we takgifanted. Like numerous other phenomena
in everyday life, it is driven by entropic forceadanot by mechanical forces. Clearly any
description of electronic devices, quantum or étadsmust incorporate such entropic forces
into the dynamical equations. Over a century agoltzBhann showed how to combine
entropic forces with Newton’s law, and his celebdaéquation still stands as the centerpiece
in the transport theory of dilute gases, thougtvas highly controversial in its day and its
physical basis still provokes considerable debsge for example, McQuarrie 1976]. The non-
equlibrium Green’s function (NEGF) formalism, wesdgbe in this chapter, originating in the
work of Martin and Schwinger 1959, Kadanoff and Ba$962 and Keldysh 1965, can be
viewed as the quantum version of the Boltzmann ®ojuait combines entropic forces with
Schrodinger dynamics.

What makes both the Boltzmann and the NEGF fosmaiconceptually challenging is
the intertwining of dynamical and entropic forc&gy. contrast, the ballistic limit leads to a
relatively simple model with dynamical and entroprocesses separated spatially. Electrons
zip through from one contact to the other drivemepu by dynamical forces. Inside the
contacts they find themselves out of equilibriund ame quickly restored to equilibrium by
entropic forces, which are easily accounted forpéynby legislating that electrons in the
contacts are always maintained in local equilibrivse could call this the “Landauer model”
after Rolf Landauer who had proposed it in 195&a®nceptual tool for understanding the
meaning of resistance, long before it was made rexpatally relevant by the advent of
nanodevices. Today there is indeed experimentdkeece that ballistic resistors can withstand
large currents because there is negligible Jouddirigeinside the channel. Instead the bulk of
the heat appears in the contacts, which are Igvgtas regions capable of dissipating it. |
consider this separation of the dynamics from tlerhodynamics to be one of the primary
reasons that makes a bottom-up viewpoint startinty wallistic devices pedagogically
attractive.

Our objective is to present the complete NEGF-laaredl model for nanodevices (Figure
3a) that incorporates the contacts into the clab&6GF formalism following Datta (1989,
1990), Meir and Wingreen (1992). | will summaribe ttomplete set of equations (section 2),
present illustrative examples (Section 3) and amtelwith a brief discussion of current
research and unanswered questions (Section 4k el Watten extensively about the NEGF-
Landauer model in the past (Datta 1995, 2005, 2@88)will not repeat any of the detailed
derivations or discussions. Neither will | attentptprovide a balanced overview of the vast
literature on quantum transport. My purpose is $np convey our particular viewpoint,



namely the bottom-up approach to nanoelectronitsgiwl believe should be of interest to a
broad audience interested in the atomistic desenutf non-equilibrium phenomena.

2. THE NEGF-LANDAUER MODEL

Fig.5 shows a schematic summarizing the basic sninait define the NEGF-Landauer model.
The channel is described by a Hamiltoniatig] while the communication between the

N
Source Channel Dram
| = 1 . . .
bl . ' Fig.5: Schematic summarizing the
‘ul H=H,+U H basic inputs that define the
= : ; NEGF-Landauer model widely
l'.' L.f L_:- used to model nanoscale
lI devices.

channel and the contacts is described by the selfigg matrices ¥;] and [%,]. The self-
energy [Z<] and the potential [U] describe the interactionhathe surroundings and have to

be determined self-consistently as we will expktiortly. Each of these quantities is a matrix
whose dimension (NxN) depends on the number osldaactions (N) needed to represent the

channel. Ho] and [U] are Hermitian, while I; 5] have anti-Hermitian components

. +
M2s=1[Z125= 2125 ]

All contacts (Fig.5 shows two, labeled source amain) are assumed to remain in local
equilibrium with electrons distributed accordingsigecified Fermi functions

1
f1,2(E) = -
1+ exp{ M,zJ

kgTy 2

Given these inputs, we can calculate any quaatitgterest such as the density of states
or the electron density or the current using theaéigns summarized in Section 2.1. But first
let me briefly mention a simplified version (Fig.#at can be obtained from the full NEGF-
Landauer model with appropriate approximations e@scdbed in Section 2.2. The inputs to
this model are the density of states, D(E-U) wHiolats up or down according to the local
potential U , along with escape ratgg, s that are simple numbers representing the same

physics as the anti-Hermitian parf;[s] of the self-energy matrices. Despite the



simplifications that limit its applicability, thismodel has the advantage of illustrating much of
the essential physics of nanoelectronic devicestfiZ005, 2008].

For example, in Section 2.2 we obtain the followaggation

I (E) :%% D(E) (fL(E)- f,(E))  (same as Eq.(8))

for the current per unit energy as a special casieeogeneral matrix equations. However, this
equation can be obtained from elementary argumentisout invoking any advanced
concepts, as | do in an undergraduate course ooefetronics that | have developed (see
chapter 1 of Datta 2005). The point | want to makeut Eq.(8) is that it illustrates the basic
“force” that drives the flow of current f;(E) — f,(E). Contact 1 tries to fill the states in the
channel according td;(E), while contact 2 tries to fill them according fg(E). As long as
f1(E) # fo(E), one contact keeps pumping in electrons and ther &keeps pulling them out
leading to current flow. It is easy to see thas thurrent flow is restricted to states with
energies close to the electrochemical potentialthefcontacts. For energies E that lie far
below 4 and 15, both f{(E) and fo(E) are approximately equal to one and there is no
steady-state current flow. Although this conclusimpears obvious, it is not necessarily
appreciated widely, since many view the electeddfias the driving force, which would act on
all electrons regardless of their energy. But ted driving force is the difference between the
two Fermi functions, which is sharply peaked atrgi®s close to the electrochemical

potentials.

Fig.6: Schematic representing the

, Source  Channel Drain
independent-level model for
nanoscale devices which can ¢
: : . E-U)
be viewed as a simple version H1 H2
of the general model of Fig.5
with matrices replaced by ! Ve y2
ordinary numbers.

(l
'l

Once we recognize the role &f(E) — f,(E) asthe driving force thermoelectric effects
are also easily understood. If both contacts haeesame electrochemical potential u, but
different temperatures, we have a driving for6€E) - fo(E) that changes sign at E =
leading to a thermoelectric current whose sign ddpen whether the density of states D(E)
is increasing or decreasing around E = p. The mtdeSeebeck effect predicted from this
argument (Paulsson and Datta 2003) seems to b@oih ggreement with recent experimental
observations (Reddy et al. 2007). This viewpoilsb gorovides a natural explanation for
phenomena like the Peltier effect that form thedfs thermoelectric refrigerators (Shakouri
2006). We mentioned earlier that in the Landauedehall the Joule heat is dissipated in the
two contacts. But if a conductor has a non-zerosidgnof states only above the



electrochemical potentials (Fig.7) then an electroarder to transmit has to first absorb heat
from contact 1 thus cooling this contact.

In order for electrons to flow in the direction sho we must havé,(E) > fo(E) which
requires
E-tn _E-p
T T

E

)

Fig.7: “Peltier effect”. If a conductor has Heat Heat
a non-zero density of states only absorbed _ B released
above the electrochemical U \
potentials (Fig.7) then an electron 1

in order to transmit has to first I I /JZ
absorb heat from contact 1 thus

cooling this contact. D(E)

Noting that E — z4 represents the heat removed from contact 1E&nrdgs represents the heat
released to contact 2, we recognize this as anstatieof the Carnot principle.

What | am trying to illustrate here is the clarityth which many key concepts can be
understood within the bottom-up approach, espgcile use the simplified version (Fig.6).
However, in this chapter we do not discuss thisieerany further. Instead we will focus on
the full matrix version.

2.1. Summary of equations

A derivation of the basic equations of the NEGF-daurer method can be found in Datta 2005
both from a one-electron Schrodinger equation Geapter 9) and from a second quantized
formalism (see Appendix). Here we will simply sunrina the equations without derivation.
In quantum transport we have a matrix correspontbngach quantity of interest from which
the desired information can be extracted. For exeynpe have apectral functionwhose
diagonal elements give us the local density ofestdtimes?271), an electron and a hole
correlation function whose diagonal elements give us the electron atel density per unit

energy (times271) and acurrent operator[1°°] whose trace gives us the current. The
following equations allow us to calculate thesergiti@s.

(1) Spectral function, [A(E)]is obtained from

G(E)=[El —Hg-U -5, -5,-5.] * (2a)
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A(E) =i[G-G"] (2b)
(2) Electron and hole correlation functions@"(E) and GP(E)] are obtained from

[GN(E)]= [GG'] fy +[GIG'] f, +[GENGT] (3a)
[GP(E)]= [GMG'](L- fy) +[GM.G (1~ f,) +[GZUG']  (3b)

It can be shown that A"+GP, as we would expect since the density of statesldrequal
the sum of the electron and hole densities.

(3) Current operator, I; at terminal ‘i’ per unit energy is obtained from
PE)=1(re" -anlf-2e" 6"l (aa)

The charge current per unit energy (to be intedrateer all energy for the total current) is
obtained from the trace of the current operator:

l;(E) :% (Trace[el‘iA] fi —Tracl’ iGn]) (4b)
while the coherent component of the current cacdbeulated from the relation
lon(E) = Tracd MGG I (E) - (E)  (4c)

where the quantityfcor(E)ETrace[FlGl'zG+] Is called the “transmission”. Eq.(4c) only
gives thecoherentpart of the current while Eq.(4b) gives us thé ¢ukrent, the coherent plus
the incoherent.

Note that the current operator from Eq.(4a) camused to calculate other quantities of

interest as well. For example, the spin currenicbe obtained from Trace§ IiOp] where S
IS an appropriate matrix representing the spin.

Eqgs.(2) through (4) involve three quantities [JP¢] and [Zisn] that describe the
interactions of an individual electron with its s,mrndings. These quantities are functions of

the correlation functions G",GP]) and have to be calculatelf-consistently The actual
function we use embodies the physics of the intenas as we will outline below. But let us
first neglect these interactions and try to gethgspral feeling for Egs.(2) through (4), by
applying them to a particularly simple problem.
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2.2. Independent level model

Egs.(2) through (4) provide a general approacth& problem of quantum transport,
with inputs in the form of (NxN) matrices. The Hadtmnian matrix [H] has N eigenstates and
a simple approach is to treat each eigenstateaehaand add up the currents as if we have N
independent levels in parallel. We call this thedépendent level model” which would be
precisely correct if the self-energy matrices wals® diagonalized by the transformation that
diagonalizes [H]. This is usually not the case, thetindependent level model often provides
good insights into the basic physics of nanoscalesport.

Consider a channel with a single energy eigenstatee energy range of interest. We
can use this eigenstate as our basis to writenplitiparameters as (1x1) matrices or pure
numbers:

Hl =& [Z]=-in/2, [S]=~iypl2, [ = W [l = p

Neglecting all interactions and setting each ofghantities [U], <] and [ZiS”] to zero, we
have from Eq.(2) for the

Green’s functionG = 1 (5a)

E-c+i(p+ )2

y

and the Spectral functioA=
(E-&)° +(yl2)

where y= )4 + )» (5b)

The density of states is equal to2¥1 showing that the energy level is broadened ardbhad
energy levels. Eq.(5) gives the occupation of this broadenedllev

y1f1+ V2 f2 (68.)

Electron correlation functios" = 5 5
(E-8)“+(yl2)

or the lack of occupation thereof

GP= - 1)+ - 1) (6b)

Hole correlation function 5 >
(E-8)+(yl2)

The electron and hole density per unit energy arengby G" /27 and GP/2n respectively
and as expected, /G"+GP.

Finally, the current can be calculated from Eq.(@b{4c)

ez 4 LaV7; £,(E) - f,(E
B2 oo (1O 2E) ™
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Using Eqgs.(7) and (5b) we can write

_9 h» _
|(E)—%m D(E) (f1(E) - f2(E)) (8)

where D(E) = A(E) /271 is the broadened density of states associatedthéttevel.

Now if we superpose the results from N levels Wi Isave exactly the same equation
for the current. It is just that D(E) now represetiite total density of states rather than just the
part associated with a particular level. Indeed careinclude a self-consistent potential U into
this model simply by letting the density of statiest up or down, D(E-U) and this approach
(Fig.6) has proved quite successful in providingiraple description of nanoscale transistors
[Rahman et al. 2003]. Elastic and inelastic intkoas can also be included straightforwardly
into this model [Datta 2007]. However, we will ndiscuss this model further in this chapter.
Instead we will focus on the full matrix version.

2.3. Self-consistent potential, [U]

The potential [U] represents the potential thatiradividual electron feels due to the
other electrons and as such we expect it to deparitie electron density or more generally

the correlation function@"]. In semi-empirical theories the HamiltoniaK{] often includes
the potential under equilibrium conditions, so tfidt itself should account only for the

deviation [0G"] from equilibrium. How [U] is related toG"] or to [0G"] depends on the
approximation used, the simplest being the Harapproximation which is equivalent to
using the Poisson equation or classical electiosta¥lore sophisticated theories using many-
body perturbation theory or density functional ttyewill include corrections to account for
exchange and correlation. We will not go into tharsy further, except to note that there are
examples of devices whose current-voltage chaiatitesr cannot be described within this
approach no matter how sophisticated our choic8Udf These devices seem to require
models that go beyond the framework described (s&® concluding section).

2.4. Intra-channel interactionsz{] and [Zisn]

As | mentioned earlier, the classic NEGF formaliske much of the pre-mesoscopic
literature on transport theory paid no attentioriie contacts. Instead it was focused on the

quantities E<] and [Z¢'] and provided systematic prescriptions for writthgm down using
diagrammatic perturbation theoretic treatment éattinteractions [Danielewicz 1984]. In the
self-consistent Born approximation (SCBA) we carntevfor any interaction involving an
exchange of energy

[Zig(E)} = Dijki (&) [Gn(E —5)} (9a)

i Ki
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[Zosm(E)} = D i (f)[G IO(E+€)} (9b)
j ki

where summation over repeated indices is impligd ] is obtained as follows: Its anti-
Hermitian component is given bf¢(E) = ="(E)+ =2"Y(E), while the Hermitian part is
obtained by finding its Hilbert transform.

The “scattering current” is given by (cf.Eq.(4b))

Is(E) :% (Trace[eZL”A] —Tracfl SG”]) (10a)

:E (Trace[gzisnG IO] —Trac{azgu'Gn]) (10b)

and it can be shown thatl;(E)+ Is(E) is assured to equal zero at all energies, as negjui
i
for current conservation. Making use of Egs.(9ab)can write Eq.(10) in the form

5B} % Dy Gi(E -2 6P(B)-Dg(d) GH(E+4 G(E) (100
1 ],K,

which can be integrated to show thdE I¢(E) = 0, as we would expect since there is no net
exchange of electrons with the scatterers. HoweVedE E I.(E)#0, indicating the

possibility of energy exchange. This equation carubderstood in semiclassical terms if we
assume that the electron and hole matrices arepwéhydiagonal

(B) 1) ZDikk(e) GR(E~#) GP(E) ~Di®) G (E+2) GT(E)
I,

This is essentially the standard scattering terthénBoltzmann equation if we associate the D
tensor with the scattering probabilitieBjyy (€) — Sik (). We know from the Boltzmann

treatment that if the entity (like phonons) withialthe electrons interact is in equilibrium
with temperaturel, then in order to comply with the laws of thermpdsnics, we must have
Sik (&) = Skj(—¢€) exp (—¢/ kgTs) . The corresponding relation in quantum transport

Dijki (&) = D ji (=€) exp (~&/ kgTs) (11)

is more subtle and less appreciated. Note, howekat, neither the semiclassical nor the
quantum restriction is operative, if the interagtemtity is not in equilibrium.
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If we assumeelastic interactions £ = 0), along with the equilibrium condition (Eq.(D),
then we can write

2UE)| =Dp|e"®)]  and|2W®)] =Dy |ch®)]  @2)

so that [F(E)] i = Dijd [AGE)] y
and [X¢] can be related directly to [G]:
=] i = Di ], (13)

This simplifies the calculation by decoupling E&%irom (3) but it is important to note that
Egs.(12) and (13) are valid only fro elastic intgi@ns with scatterers that are in equilibrium.

As mentioned above, the NEGF formalism providesrclgrescriptions for calculating the

tensor [[D]] starting from any given microscopiddraction Hamiltonian. Alternatively, we

have advocated a phenomenological approach whesgdgific choices of the form of the

tensor [[D]] give rise selectively to phase, monuentor spin relaxation and their magnitudes
can be adjusted to obtain desired relaxation lendph these quantities as obtained from
experiment For example, the following choice (Gadieh-Mojarad and Datta, 2007).

Diji =dp oik9ji (14a)

dp being a constant, leads to pure phase relaxafiois. is equivalent to writing Z.] and

[=I"] as a constant times3] and [G"] respectively:

[Z5] i =dp [G] ; and [zig} =dp[Gn] (14b)

j ]

| will present a concrete example showing that dhieice of the tensor [[D]] indeed relaxes
phase without relaxing momentum. But one can seadhson intuitively by noting that the
SCBA (Eq.(9)) effectively takes electrons out oé tbhannel and feeds them back with a
randomized phase similar in concept to the Butitkebes widely used in mesoscopic physics
[Datta 1989, Hershfield 1991]. A constant multiplaes shown in Eq.(23b) suggests that the
electrons are fed backhile preserving the initial correlation function »xactly. We thus
expect no property of the electrons to be relaxea et for phase.

Another choice D = dmy G dk 9j (15a)

that we will illustrate is equivalent to writing
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[zs]ij =dm9; [G]ij and [ziglj = dpg; [Gnlj (15b)

Unlike the phase relaxing choice (Egs.(23)), tihisice feeds back only the diagonal elements.
In a real space representation this leads to mamenelaxation in addition to phase
relaxation, as we will see in Section 3.

A choice that leads to pure spin relaxation i® gbed = ds Tac® Idb (16a)

where we have used a separate set of indices,(hibstead of i,j,k,|) to indicate that these are
spin indices. The tensor has the same form as ftrapure phase relaxing interactions
(Eq.(23)) as far as the indices other than spincareerned. Her& denotes the Pauli spin
matrices and Eq.(25a) is equivalent to writing

[25]= ds (oxl[Glloy] +[ayl[Glloy] +[0,][G]l o))
and | E0|= ds (0,160 + [0y ][ [0y] + [0,1IG™0)) (tsb)

It is straightforward to show théfrace[ilsnﬁ} = - dg Trace[G"d] , indicating that this

choice for the tensor [[D]] feeds back a spin eqaat d times the original spin, thus leading
to spin relaxation.

In the next section we present a few examples ve tine reader a flavor of how these
equations are applied. More examples, especiablgetiinvolving spin are discussed in another
chapter in this volume [Golizadeh-Mojarad and Datta

3. AFEW EXAMPLES
3.1. Single-moded channel

Consider first a one-dimensional single-band tightdling model with a nearest neighbor
Hamiltonian of the form

e -t 00 -
-t & -t 0 - a7
0O -t € -t O

which can be represented schematically as showkigr8. In principle, the Hamiltonian
should also include the potential due to any exevoltages applied to the electrodes, but for
our examples we will neglect it assuming it to beal. We will also ignore the self-consistent
potential [U].
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[Z;]

;_gig o

Fig.8: One-dimensional single-band tight-binding dalowith site energys and nearest
neighbor overlap “-t” having a dispersion relatiohthe form E =¢ - 2t cos ka, a
being the nearest neighbor distance.

Let us treat just one site as the charfi]] = £ and the rest of the semi-infinite wire on either
side as self-energies that are given by (Caral.€1972)

[21] = -te’*® and[,] = -te'*®
so that[l1] = 2t sinka and[I';] = 2t sinka

where “ka” is related to the energy by the dismerselation E = - 2t cos ka.

1 A
E_£+ 2te|ka - 2t S|nka

From Eq.(2), [G]=

From Eq.(4),  1(E)=(a/h) (f1(E) - f2(E)) (18)

as long ass-2t < E < £+2t. Outside this energy range, “ka” is imaginary, mgk{%;] and
[Z,] purely real and hendd;] =[I»] = O.

From Eq.(18) we obtain for the total current

| =(a/h) [dE (fy(E) - f2(E)) = (a/h) (14~ 1)

Since 14 — 15 =qV this shows that a one-dimensional ballistic wies la conductance equal

to the quantum of conductanckelV = q2/h.

Note that the single-band tight-binding HamiltoniarEq.(17) can alternatively be viewed as
2

a discrete version of a one-dimensional effectiassrHamiltonian of the formh—m—z, if
ox

we sett:h2/2mez, &=2t. Any potential U(x) can be included in Eq.(1@y adding

U(x=x;) to each diagonal element (i,i). The continuumsiar has a dispersion relation

E =#°k?/2m while the discrete version has a dispersion relaig2t(1-cos ka).The two
agree reasonably well for ka &/3, with energies in the range 0 < E <*t.
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3.2. Conductance quantization

Fig.9 shows the transmission versus energy cdenilfor a rectangular conductor of
width 102 nm using the model described below. Nibie discrete integer steps in the
transmission as the energy increases and new subloartransverse modes come into play.
The discrete integer values for the transmissian l® low bias conductance values that are
approximate integer multiples of the conductancentum. This quantization of the
conductance in multi-moded wires, first observegezinentally in 1988 (van Wees et al.
1988, Wharam et al. 1988) serves as a good benkHoraany theory of quantum transport.

Energy (eV)

0.04

Lo -

0.02 |—_—

102 nm 0.01F

| | -0.0% > 4 6 8 10
| Transmission--->

Fig.9: Transmission versus energy for a rectangidaductor of width 102 nm modeled with

a single-band tight-binding model with= #?12me? = 0.04 eV, =4t, m = 0.25*ree
electron mass, a =2 nm.

3.2.1. Model details

The rectangular conductor is modeled with a skbgled tight-binding model with

t=#2/2me® = 0.04 eV, e=4t, m = 0.25*ree electron mass and a = 2 nm By.
Conceptually we can lump each column of the sqlstiee into a single matrixxy, which is
essentially the one-dimensional Hamiltonian frore thst section (Eq.(17)). Neighboring

columns are coupled by a matriX to the left andS" to the right. In this examplef=/4"=
—t[I], [1] being the identity matrix, but in generAlneed not equaB".

The overall Hamiltonian is written as
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g a B 0 - (19)
08 a B O

The contact self-energies are given by= 438" and 3, = 5 g, whereg; and g, are the
surface Green'’s functions for the left and righttects respectively (they are the same in this
example, but need not be in general). These sueen’s functions can be obtained by
solving the matrix quadratic equations

[01 t=a-pnp" and [g2] F=a-F'0.8 (20)

These can be solved iteratively in a straightfodvaanner but this can be time-consuming for
wide conductors and special algorithms may be delgr If the matricesr andG can be
simultaneously diagonalized then a faster approgaoh use this diagonal basis to write down
the solutions to EQ.(20) and then transform batkhis basis the multi-moded wire decouples
into separate single-moded wires. However, thispndecoupling is not always possible
since the same unitary transformation may not diaipe botha andg.

£ lel— el— ¢} £
-t
£ el et e £
T 7
£ LE L& L&) 2

[24] [H] [25]

Fig.10: Single-band tight-binding model on a squatéce with site energy and nearest
neighbor overlap “t” having a dispersion relatioof the form E =
£=2t coskya—2t coskya, a being the nearest neighbor distance. Concéptue

can lump each column into a single matsixwith neighboring columns coupled by a
matrix £ to the left and3" to the right.

3.3. Ballistic Hall effect
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Fig.11 shows another interesting result, namely el resistance normalized to the
resistance quanturrh(ez) as a function of the magnetic field (applied @dahe z-direction)
calculated for a rectangular conductor of width WLG2 nm. Note the plateaus in the Hall
resistance equal to the inverse of integers 2{8,4representing the quantum Hall effect. This
calculation is done using essentially the same Inaslén the last example, but there are two
additional points that need clarification.

The first point is that the magnetic fiel=B2 enters the Hamiltonian through the
phase of the nearest neighbor coupling elemensé@sn in Fig.12. The second point is the
concept of docal electrochemical potentiahat we have used to obtain the Hall voltage. Our
calculations are done at a single electron energynd at this energy we assume the Fermi
functions f{(E) and f,o(E) to equal one and zero respectively. At all poliitswithin the
channel, the occupation lies between 0 and 1, &arsdtiis occupation that we call the local
electrochemical potential and estimate it fromréteo of the local electron density to the local
density of states [McLennan et al.1991]:

2() =G"(i,i)/AG,i) (1)

Normalized
Hall Resistance

0.5
X

0.4}
- 0.3 [
|

4

% 10 20 30 40
Magnetic Field (T) --->

Fig.11: Hall resistance ( = Hall voltage / currenfjrmalized to the resistance quantum

(h/e2) versus magnetic field (applied along the z-dioeot calculated for a

rectangular conductor of width W = 102 nm. Note pteteaus in the Hall resistance
equal to the inverse of integers 2,3,4 etc. reptesg the quantum Hall effect.

Electron energy =t ~ 0.04 eV.
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Fig.12. The magnetic field B=B2
represented through a vector
potential A=-ByX, appears in the
single-band tight-binding model in
the phase of the coupling elements
along x: t'=t exp+iBya).

Fig.13 shows a plot of this local electrochemicatiegnmtial 1 across the width of the conductor.

At zero magnetic field, p is constant (= 0.5) aeglalops a slope as the field is increased. The
oscillations arise from coherent interference @ffébat usually get washed out when we sum
over energies or include phase relaxation procest®a® we have estimated the Hall voltage

simply by looking at the difference between p & tlvo edges of the conductor and the Hall

resistance in Fig.11 is obtained by dividing th@sverse Hall voltage by the current.

Electrochemical

Potential
1
Bl 6T B =15T
Fig.13. Profile of the local 0.8 N

electrochemical potential
(defined in EQ.(21)) 06 /\n
across the width of the ' AN
conductor at three
different values of the 0.4~ B=0T \/\/\‘-'/\ )
magnetic field. Electron \/\
energy =t~ 0.04 eV. 0.2 \

O i

0 20 40 60 80

y (hm) -->

3.4. “Potential” drop across a single-moded channel

An instructive example to look at is the variatiminthe electrochemical potential (defined by
Eq.(21)) across a scatterer in a single-moded wiogleled with a tight-binding model as
described in Section 3.1. As expected, the potemtogps sharply across the scatterer (Fig.14),
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but a purely coherent calculation usually yieldsiltstions arising from interference effects

(see Fig.14a). Such oscillations are usually sisomguted if not washed away in room

temperature measurements, because of strong pélagation. Much of the phase relaxation
arises from electron-electron interactions, which first order do not give rise to any

momentum relaxation. Such processes could be iediuy including an interaction self-

energy of the form shown in Eq.(23) and indeedigipsesses the oscillations (Fig.14b). The
momentum relaxing interaction shown in Eq.(24) asppresses oscillations, but it leads to
an additional slope across the structure (Fig.lai&)we would expect for a distributed

resistance.

1.6 eV-nm
H=1 uH=0
@ (b),
Coherent Pure phase
0.8 0.8 relaxation
0.6 s dp = 1le-5 eV7
o AMAAMAAA
WIS e
0.2 02
% 50 700 %
X (nm) > 20 42 )60 80 100
X (nm) --->
©) Electrochemical
1, Ry ——— Potential

relaxation

0.8
W \ dm = 1e-5 e\;
0.6 \ Fig.14: Electrochemical potential across

a single-moded wire with one

0.4 \/\\/“ scatterer. (a) Coherent transport,
M (b) Transport with pure phase

0.2 relaxation, (c) Transport with
momentum relaxation. Electron
% 50 100 energy =t~ 0.04 eV.
X (nm) --->

3.5. “Potential” drop across a single-moded chamedliding spin
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Another interesting example is the variation of glectrochemical potential for the up-spin
and down-spin channels across a single-moded wimaected to anti-parallel ferromagnetic
contacts assumed to have a coupling to the majgpig that is (1+P)/(1-P) times the

coupling to the minority spin (P=0.95). The up-spirannel is strongly coupled to the contact
with p = 1 and weakly coupled to the contact with (, with the roles reversed for the down-
spin channel. Consequently the electrochemicalnpi@deor the up-spin channel is closer to 1
while that for the down-spin channel is closer t(F@.15a). The difference is reduced when
we introduce a little spin-orbit coupling (Fig.15jut with strong spin-orbit coupling the

potential actually oscillates back and forth. Thiscillation is the basis for many “spin

transistor” proposals (for a recent review see Bapddhyay and Cahay 2008), but it should
be noted that we are assuming a contact effici€@89o) that is considerably better than the

best currently available. Also our calculationsludie pure phase relaxation § :le—5eV2)
to account for electron-electron interactions. Ehpsocesses reduce any oscillations due to

multiple spin-independent reflections.

Finally Bigd shows the effect of spin relaxing

processes (EQ.(25)) in equalizing up-spin and depin-electrochemical potentials.

u=1

(a) Na spir —orbit

couplinga =0

1W I’
0.8 Up-spin
0.6
0.4
0.2 1 Down-spin

-~ LAl

% 50 100

x (nm) --->

(c)a=10e-12eV-m

1

0.8
0.6
0.4

Up-spt

%

o2l N /N
s, ™

0 100

X (nm) --->

Up-spin

Down-spin

Electrochemical

Potential

Electrochemical

Potential

/\

. (b =212V
0.8 Up-spin
0.6 /\' ' VAT
Al V
0.4
0.2 Down-:\/\/\
pin
% 50 100
x (nm) --->
(d)ya=1E-12V-1r
d. =le-5eV?
1,
0.8
0s\\Up-spin
04]\' V?\\
0.2
Down-spin

0

50 100

X (nm) --->
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Fig.15. Electrochemical potential for the up-spmdadown-spin channels across a single-
moded wire connected to anti-parallel ferromagnetatacts assumed to have a
coupling to the majority spin that is (1+P)/(1#hes the coupling to the minority
spin (P=0.95): Ballistic conductor with (a) weakrsprbit coupling, (b) weak spin-
orbit coupling, (c) strong spin-orbit coupling afidally (d) a conductor with spin
relaxation in addition to strong spin-orbit couplinAll calculations include pure

phase relaxationd, :1e—5eV2), which reduce oscillations due to multiple spin-
independent reflections.

3.5.1. Model details

A brief explanation of how we include spin-orbitughing into the single-band tight-binding
or effective mass equation described in Section13.Zonceptually each “grid point”
effectively becomes two grid points when we inclggen explicitly and so the site energy
becomes¢[l], [I] being a (2x2) identity matrix and the nest neighbor coupling elements
become —t[l]. Spin-orbit coupling modifies thesaupling elements as shown in Fig.16 which
add to the usual —t[l] (not shown). It is straigimfard to show that this Hamiltonian leads to
a dispersion relation

E=(e-2t coska)[l]+%([ax] sinkya-[oy] sink,a) (22a)

which for small “ka” reduces to the effective mé&ashba Hamiltonian [Bychkov and Rashba
1984]:

h2K?
E= T 1]+ a(oxdky~loylk) (220)

Fig.16: Rashba spin-orbit Hamiltonian on a disctatice.
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4. CONCLUDING REMARKS

A central point that distinguishes our approachedasn the NEGF-Landauer method is the
explicit acknowledgement of the important role gdyby thecontacts a role that was
highlighted by the rise of mesoscopic physics im ldte 1980’s. Indeed we are arguing for a
bottom-up approach to electronic devices thatstawin the coherent or Landauer limit where
there is a clear separation between the role ofthamnel and the contact. The channel is
governed by purely dynamical forces, while the aotg are held in local equilibrium by
entropic forces. This separation provides a comaptlarity that makes it very attractive
pedagogically, not just for ballistic transport ot all non-equilibrium processes in general.
Dynamic and entropic processes are generally witeetd and even the channel experiences
entropic forces like the contacts, as long asstdegrees of freedom such as phonons that can
be excited. One could say that contacts are natthes physical ones at the ends of the
conductor described byz} ,]. Abstract contacts of all kinds described (2] are distributed

throughout the channel.

Usually all these contacts are assumed to beihetdjuilibrium by entropic forces. In
practice, it is not uncommon for contacts, espBcialanocontacts”, to be driven out-of-
equilibrium. This is true of physical contacts madenanotransistor channels, as well as
abstract contacts like the non-itinerant electimnsanomagnets driven by spin-torque forces
or the nuclear spins in semiconductors driven by @verhauser effect. Such out-of-
equilibrium “contacts” can be included straightfandly into the model we have described by
coupling the NEGF-Landauer model to a dynamic eqoatescribing the out-of-equilibrium
entity, like the Bloch equation for isolated spins the Landau-Lifshitz-Gilbert (LLG)
equation for nanomagnets [see for example, Salahuddd Datta 2006 and references
therein].

The real conceptual problem arises when we allmvtte possibility of correlations or
entanglement. This can be understood from a sirexdenple. Consider a channel with just
two spin-degenerate levels (Fig.17) biased suchdbatact 1 wants to fill both levels and
contact 2 wants to empty them. If both contactseapeally coupled, we would expect each
level to be half-filled:

fup=0.5 and fgn =0.5

This is exactly what we would get if we applied thethods discussed in this chapter to this
simple problem.

Fig.17. A channel with two spin-degeneratyl up
levels biased so that contact 1 wants
to fill each level and contact 2 wants
to empty them both. Assuming both dn
contacts to be equally coupled to the
channel, we would expect each state
to be half-filled at steady state.

Mo
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Now if we ask for the probability that the up-spavel is filled and the down-spin level is
empty P(10) we can write it as, (1~ fgy). We can write the probabilities of all four

possibilities as
P(00) =(1- fup) (1-fgn) . P(01) H1- fup) fan
P(10) =fup (1~ fan) . P(11) =fypfyn (23)

In this case this yields P(00) = P(01) = P(10) £1RE 1/4.

However, if the electrons are strongly interactingn the energy cost of occupying both
levels can be so high that the state (11) haspetmability. Indeed it can be shown that under
these conditions P(00) = P(01) = P(10) = 1/3 afidlP= 0. The point | want to make is
that there is no possible choicefgf and fq, that when inserted into Eq.(23) will lead to this

result! Since P(11) = 0 we must have eitf]ﬁ;or fyn €qual to zero, so that P(01) or P(10)

would have to be zero. There is no way to obtain-rero values for both P(01) and P(10),
while making P(11) equal zero.

This is an example of a “strong correlation” wh#ére dynamics of individual electrons
is so correlated by their interaction that it isdnurate to view each electron as moving in a
mean field due to the other electrons. This “Coulobtockade” regime has been widely
discussed [see for example, Likharev 1999, BeenmakR81, Braun et al. 2004, Braig and
Brouwer 2005] and it can have an important effatitlee current-voltage characteristics of
molecular scale conductors [Muralidharan 2006hé single electron charging energy is well
in excess of the broadening as well as the theemaigy.

My purpose, however, is not to talk about Coulobhixckade in particular. | use this
example simply to illustrate the meaning of cotielaand the conceptual issues it raises. One
can no longer “disentangle” different electronssté@d one has to solve a multi-electron
problem and a complete transport theory is not getilable in such a multiparticle
framework. This is true not just for correlatedodens, but for electrons correlated to other
entities such as nuclear spins as well. Any intesagyenerates correlations, but the standard
approach in transport theory is to neglect thenofahg the example of Boltzmann who
ignored them through his assumption of “moleculzas” or “Stohsslansatz”, leading to the
increase of entropy characteristic of irreversibptecesses. . Exactly how such multiparticle
correlations are destroyed will hopefully becomeackr as more delicate experiments are
conducted leading to the next level of understagpdintransport theory involving “correlated
contacts”. In the meantime there are many eleatrdavices for switching, energy conversion
and sensing that can be analyzed and designed tl#ngonceptual framework that has
emerged in the last twenty years, starting fromBb#zmann (semiclassical dynamics) or the
NEGF description (quantum dynamics) appropriatenfeak interactions, but extending them
to include the contacts. Indeed the distinguisHeature of this framework is the explicit
acknowledgement of contacts, leading naturally tsotom-up approach, which we believe
can be very powerful both for teaching and research
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