Optics in Astronomy - **Interferometry** -

Oskar von der Lühe *Kiepenheuer-Institut für Sonnenphysik* Freiburg, Germany

Contents

• Concepts of interferometry (contd.)

- Differential delay tracking
- Observables
- Sensitivity

• Practical interferometry

Todays Interferometers and Science cases

Differential delay tracking

Differential delay tracking

Goals of DDT:

- off-source phase referencing
- narrow-angle astrometry

Typical star ~ 10 parsec from Earth Jupiter mass planet 5 AU from star

Mass ratio Sun/Jupiter ~ 1000:1 Motion of Planet ~ 1000X stellar motion Star's motion ~ 0.001 arcsec peak to peak

1 mas (milliarcsec) is angular size of an astronaut standing on the moon as seen from Earth

Astrometric Signatures

September 2002

Measured Quantities and Observables

The measured quantity of interest is the correlated flux at wavelength λ and angle frequency $\vec{u}_{ik} = \vec{B}'_{ik}/\lambda$

Fourier component of source $\hat{I}_{\lambda}(\vec{u}_{ik}) = \iint_{FOV} I_{\lambda}(\vec{\alpha}) \exp(2\pi j \vec{\alpha} \cdot \vec{u}_{ik}) d\vec{\alpha}$ intensity:

Complex visibility:
$$V_{ik} = \frac{\hat{I}_{\lambda}(\vec{u}_{ik})}{\hat{I}_{\lambda}(\vec{0})} = \frac{\int I_{\lambda}(\vec{\alpha}) \exp(2\pi j \vec{\alpha} \cdot \vec{u}_{ik}) d\vec{\alpha}}{\int \int I_{\lambda}(\vec{\alpha}) d\vec{\alpha}}$$

Observables I

<u>Group Delay</u> $\Delta_{0,ik}$:

Delay for which interference contrast is maximised Group delay depends on

- baseline
- instrumental fixed delays
- source position
- delay errors: optics, vibrations, atmosphere

High precision measurement of $\Delta_{0,ik}$ permit relative position measurements with 1mas accuracy over wide angles (many degrees) and with ~10µas accuracy over narrow angles (arcminutes): **Mark III, PTI**

Calibration with reference stars or optical truss anchored to earth crust: **NPOI**

⇒ Astrometry!

Observables II

<u>Visibility Amplitude</u> $|V_{ik}|$:

- maximum contrast in interferogram
- visibility as function of delay Δ_{ik} depends on spatio-spectral content of source and system throughput
- essential for imaging with photometric fidelity
- calibration through rapid switching between program and reference sources with known visibility, monitoring of system parameters

⇒ Maps, Images!

Observables III

Referenced phase φ_{ik} :

- argument of complex visibility: $|V_{ik}| \exp j \varphi_{ik}$
- can be referenced to off-set calibrator source by differential delay measurements
- can be referenced to program source at different wavelength:
 GI2T
- essential for imaging
- Raw visibility phases are no good observables due to uncontrolled errors: $\varphi_{ik} = \varphi_{0,ik} + \varepsilon_k \varepsilon_j$
- Visibility phase can be re-transformed by changing origin of coordinate system without affecting the morphology of the reconstructed image

⇒ Maps, Images!

Observables IV

Closure phase Ψ_{ikl} :

• triple product of complex visibility: $\psi_{ikl} = \varphi_{ik} + \varphi_{kl} + \varphi_{li}$

 $=\varphi_{0,ik}+\varphi_{0,kl}+\varphi_{0,li}$

- good observable provided there are no baseline-dependent error sources
- insensitive to source position
- fewer independent closure relations than baselines: $\left(\frac{N}{2}-1\right)\left(N-1\right)$ vs. $\frac{N}{2}\left(N-1\right)$
- essential for imaging if there are no referenced phases
- ⇒ Maps, Images!

Phase closure

$$\psi_{ikl} = \varphi_{ik} + \varphi_{kl} + \varphi_{li}$$

= $\varphi_{0,ik} + \varepsilon_k - \varepsilon_i$
+ $\varphi_{0,kl} + \varepsilon_l - \varepsilon_k$
+ $\varphi_{0,li} + \varepsilon_i - \varepsilon_l$
= $\varphi_{0,ik} + \varphi_{0,kl} + \varphi_{0,li}$

September 2002

Signal-to-noise ratio of a visibility measurement

$$SNR = \frac{SN_p}{\sqrt{1 + S^{\kappa}N_p + N_b + N_d^2}} \cdot \frac{N_{red}V}{N_{tel}} \cdot \sqrt{K}$$

Ssystem Strehl,
$$\kappa = 1$$
 with mode stop, $\kappa = 0$ w/o mode stop N_p detected number of source photons N_b detected number of background photons N_d detector noise, expressed as equivalent rms no. of photons N_{red} redundancy of baseline considered N_{tel} total number of telescopes in arrayVintrinsic visibility of sourceKnumber of incoherently averaged visibility measurements

Signal-to-noise ratio of a visibility measurement

Telescopes 1.8m Diameter, H Band

Telescopes 8m Diameter, H Band

September 2002

Milestones in Optical Interferometry

Year	Scientist	Remarks		
1868	H. Fizeau	Proposal to use masks to increase telescope resolution		
1870	E. Stephan	Marseille 80cm reflector with strip mask		
1890	A. Michelson	Diameters of Jovian satellites (Lick)		
1921	A. Michelson, F. Pease	Diameter measurement of α Ori with 20 ft. interferometer on Mt. Wilson Hooker telescope		
1935	F. Pease	Mt. Wilson 50 ft. interferometer (unsuccessful)		
1956	R. H. Brown, R. Twiss	Intensity Interferometer		
1970	A. Labeyrie	Stellar Speckle Interferometry		
1973-1975	A. Labeyrie	Interferometry w. independent telescopes (24cm)		
1974	M. Johnson et al.	Heterodyne interferometry at 10 µm		
1985	A. Labeyrie	Interferometry w. independent telescopes (150cm)		
1988-1993	M. Shao et al.	Production-line interferometry		
1990	J. Baldwin et al.	Phase-closure imaging of α Ori surface		
1995	J. Baldwin et al.	Multiple telescopes imaging of Capella		
2001	M. Shao et al.	"First fringes" with Keck Imaging Interferometer Array		
2001	A. Glindemann et al	"First fringes" with VLT Interferometer siderostats		

Today's Interferometers

Program (Nation)	No. of. Baselines	Max Baseline [m]	Element Diameter [m]	Year of Operation
GI2T (F)	3	65	1.52	1985
ISI (USA) ¹	1	35	1.65	1988
COAST (GB)	6	100	0.40	1992
SUSI (AUS)	1	640	0.14	1992
IOTA (USA)	3	45	0.45	1993
NPOI (USA)	3 (6, 15) ²	250	0.35	1995
PTI (USA)	1	110	0.45	1996
MIRA-I (JN)	1	4	0.20	1998
CHARA (USA)	10	350	1.00	2000
VLTI (EUR)	6 / 3 / 63	128 / 2004	8 / 1.8	2001
KIIA (USA)	1 / 6 / 153	75 / 1804	10 / 1.5	2001
Magellan (USA)	1	60	6.5	2005
LBT (USA/I/D) ⁵	1	20	8	2005

Keck Interferometer Array, USA

September 2002

image courtesy Bertrand Koehler

September 2002

VLT Interferometer, EUR

VLTI Delay Lines

September 2002

VINCI - VLTI Commissioning Instrument

September 2002

September 2002

September 2002

Fundamental Stellar Parameters

500

400

300

200

100

0.001

Frequency

Fringe contrast as function of apparent diameter

Distribution of apparent diameters for various spectral classes for stars seen from Paranal, Chile

diameter [arcsec]

0.01

.

100

80

60

40

20

0

• cum. 0 + B

⊿ К ∃ М

0.1

8

Cumulative frequency

SUSI, Narrabri, Australia, IOTA, Mt. Hamilton, USA

Stellar Surfaces

Three maps of α Ori (Betelgeuse) taken in Nov. 1997

700 nm (WHT)

pictures courtesy COAST

905 nm (COAST)

1290 nm (COAST)

September 2002

Multiple Stars

Maps of Capella taken 15 days apart

COAST, Cambridge, UK

September 2002

Observations of Mizar with NPOI on May 1 - 4, 29, June 1, 1996

NPOI, Flagstaff, USA

Stellar Environments

September 2002

GI2T, Calern, France

September 2002

Palomar Testbed Interferometer (PTI), USA

September 2002

Dual Object Interferometry

Conclusions

- Optical interferometry has matured and becomes a regular tool for astronomy
- eight interferometers with apertures up to 1.5m operational on regular basis
- three arrays involving 10m class telescopes nearing completion
- unique science being produced