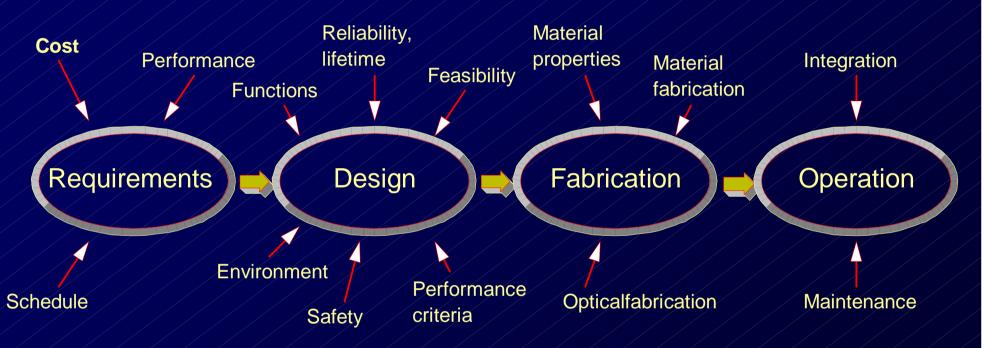


<u>- Astronomicaltelescopes-Modernsolutionsforlargetelescopes</u>

P.Dierickx EuropeanSouthernObservatory

VatoSum

- Larger ⇒ higher S/Nratio&sensitivity,shorterexposuretim es
- Keyissues-notonlyamatterofmirrors...!
 - Maximizethroughput ⇒ largediameter
 - ⇒ minimumnumberofsurfaces
 - ⇒ highreflectivity,lowemissivity
 - Maximizeresolution \Rightarrow optical quality (design, construction, operation)
 - \Rightarrow site(atmosphericturbulence)
 - ⇒ largediameter(withadaptiveoptics)
 - ⇒ accurateguiding
 - ⇒ reliability,durability
 - ⇒ operationsscheme
 - ⇒ compactdesign(⇒ structure,enclosure,...)


Bigisbeautiful

- \Rightarrow affordablesolutions
- ⇒ projectmanagement/riskmanagement

- Maximizeefficiency
- Minimizecost
- Minimizeschedule

• Startwithrequirements,notwithdesign!!!

- Engineersmaydo
 - Agoodjobifyoutellthemwhat youwant(keepcheckingthem,though)
 - Agoodbutpotentiallyuselessjobifyouletthem dowhatthey want
 - Anawfuljobifyoutellthemhow _____ todowhatyouwant

NatoSumme

- Telescopediameter?
- Specializedormulti-purpose?
 - Specialized:highperformance/costratio,butno tflex
 Examples:surveytelescopes,dedicatedtoIR,spect ro
 - Multi-purpose:bepreparedforcompromises
- Fixedelevationorfullysteerable?
- Funding?
- Timescale?
 - Possiblecomplementaritywithotherprojects
 - Windowofopportunity
 - TimeforR&D?
- Operations
 - yourowntelescopeorservice-oriented?
 - Lifetime?

tflexible roscopictelescopes

Assumption:youwantit

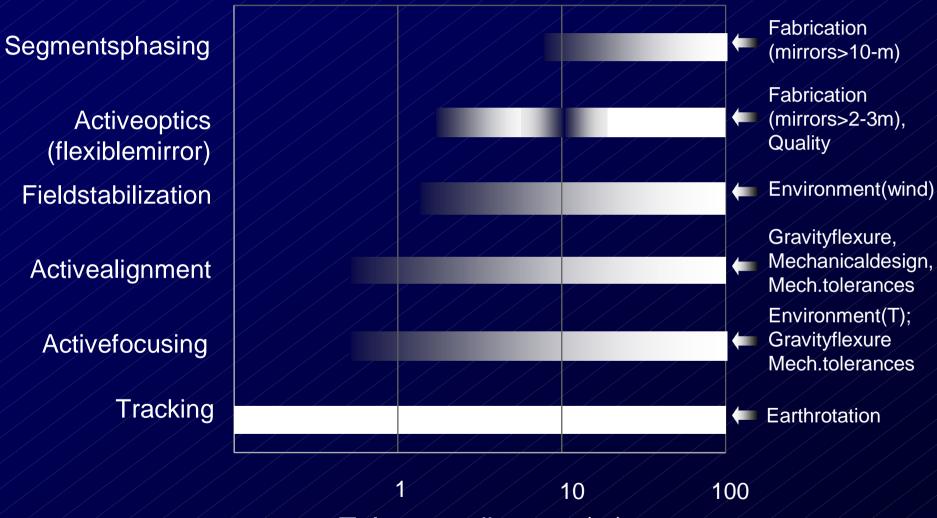
- Big(>4-m)
- Multi-purpose
 - (withpossibleoptimization, e.g. infrared)
- Fullysteerable
- Fundingnothopeless
- Fastenoughtocompete
- Foryourselfonly, butforsomemoneyyou'dallow strangerstotouchit
- Tolastuntilyouretire

VatoSum

<u>Acommondesignformoderntelescopes</u>

Assumption:sizenotmuchlargerthan10-m

Designsolution **Ritchey-Chrétien** ~F/1.5primarymirror ~F/8-F/15telescope Nasmyth&Cassegrainfoci Backfocaldistance Primarymirror(M1) Glass/Glass-ceramics Segmentedoractive Fixedsecondarymirrorunit Activefocusing&alignment Faststeering(~10-50Hz)/chopping Lightweight Telescopepupil Alt-az telescopemount Co-rotatingenclosure Airconditioned Openings

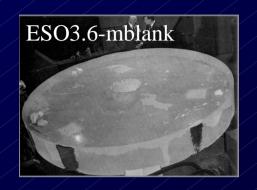

Comments(incomplete)

Bestimagequality(FOV)with2mirrors,highthroughput Compactdesign(structure,enclosure) Obscuration,M2max.size,platescale,instrumentat ion Severalfoci;NB:betterwithout Cass egrain (higherfork) Designvolumeforsensors,instruments

Proventechnology SegmentedifD>9-m,otherwisemonolithic,active Alternative:exchangeableunits;primef ocus thermal&gravityloads vibrations,windload/Infrared faststeering;lowermass/inertia Infrared Compactstructure,smallenclosure,lowairvolum e Alternative:openair(slidingshelter,inflata bledome) Keeptemperaturetonightone forwindflushing

Telescopediameter(m)

VLTopticaldesign


	Surface	Conic constant	Radius of curvature	Axial distance to next surface	Diameter [m	im]	
	M ₁	-1.004690	28800	12396.429	RED 818	35.9	
	M ₂	-1.669260	4553.571	0	RAD 111	6	
	Exit pupil			9896.429	EXP 111	3.1	
	M ₃		flat 45°	6800	RED ≥8	66 × 1242	
			2089.6		RFD 104	18.0	
	RED 111	6	Field radi	ius Astigmatism	Wavefront	RMS radius	
	Pupil Secondary mirror M2		[arc mir		RMS [nm]	geom. image [arcsec]	
			<u> </u>		<u> </u>		
			3	173	71	0.013	
			6	691 1555	285 642	0.050	
			12	2769	1143	0.201	
				4333	<u> 1777</u>	0.314	
12396.43				Ritchey-Chrétie	en		
			• 8.2-mactivef/1.8primarymirror				
1242 x 866		Nasmyth		Secondar maintain			
	Tertiar	v / / /	FOV 1043.8				
	Tertiar	МЗ		– Pupil			
				– Focusing			
2500.00	Pri	Primary mirror M1			t(fieldstabilisation,chopping)		
				– Centring(rotationaboutcentreofcurvature)			
				– Ultra-lightw	eight(Berylliu	m)	
	8185.9 ——					Pa	

Page8

Primarymirrortechnologies

- Classicalapproach(pre-1980):
 - Thickmirrorblank, aspectratio~1/8, highmass
 - Passivesupportsystem(whiffle-treeorastaticlever s)
 - Lowexpansionglass, buthuge thermalinertia
 - Castingaseriousissue(inhomogeneities, residual stresses)
- Modernoptions
 - Segmentation(<u>Keck</u>,HET)forD>9-m
 - ThinactivemeniscusforD<8.4-m (<u>NTT</u>,VLT,Gemini,Subaru)
 - Semi-rigid, actives tructured mirror (Boro-silicate; also requires thermal control)

Primarymirrorcharacteristics

<u>4-m<D<~8.4-m</u> <u>Activemirrors</u>

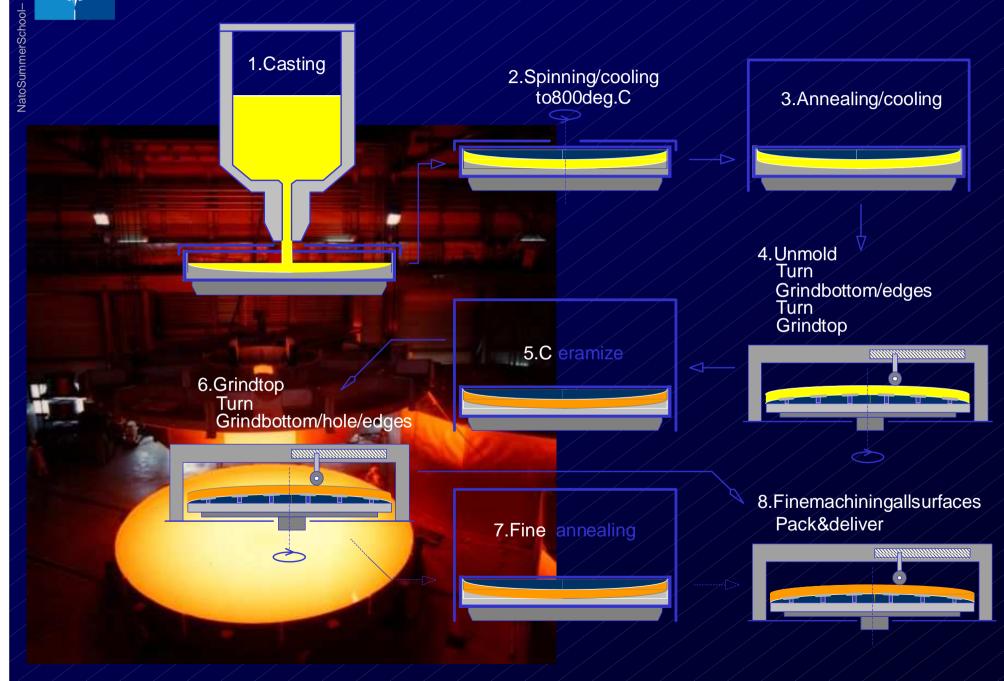
PRO

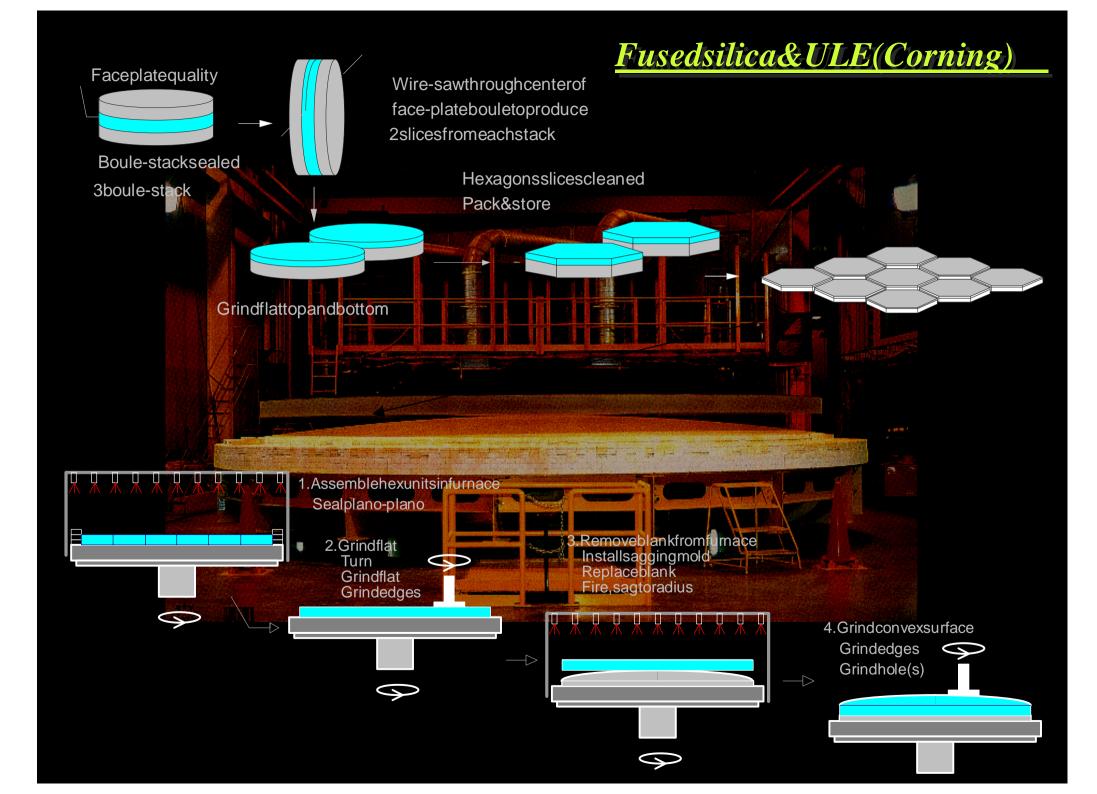
- Relaxationoffabricationspecs
- Veryhighqualityforthemoney
- Willdomorethancorrectitsownshape
- Veryfastfocalratioachievable(~f/1)

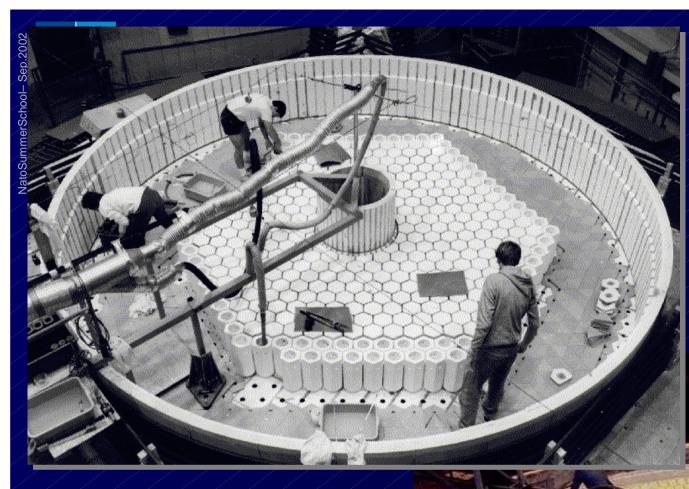
CON

- Investmentinproductionfacilities
- Fragile;handling,&transportmore cumbersome
- Requireslargecoatingtank
- Unrealisticbeyond~8.4-m

<u>D>9-m</u> Segmentedmirrors

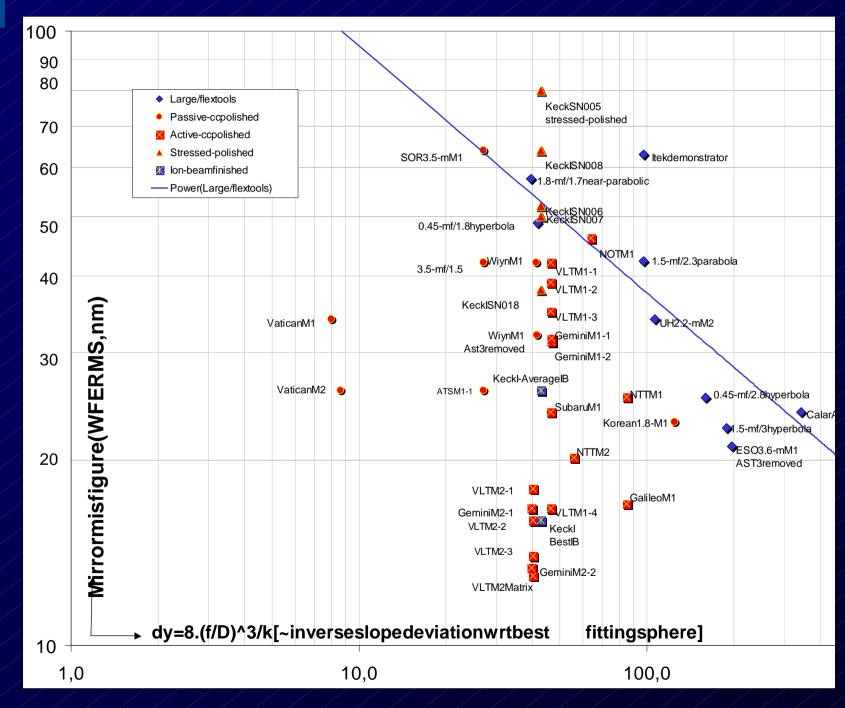

PRO


- Blanksfabrication(upto~2-msegment)
- Light, cost effective (thinblanks)
- Easyhandling&transport
- Accidentnotcatastrophic
- Scalable!!!


CON

- Discontinuousaperture(uncriticalif properlyphased)
- Frequenthandling
- Polishing&testingmoredifficult(off-axis asphericsegments,curvature)
- Longerfocalratio

SCHOTT Zerodur (spin-casting)



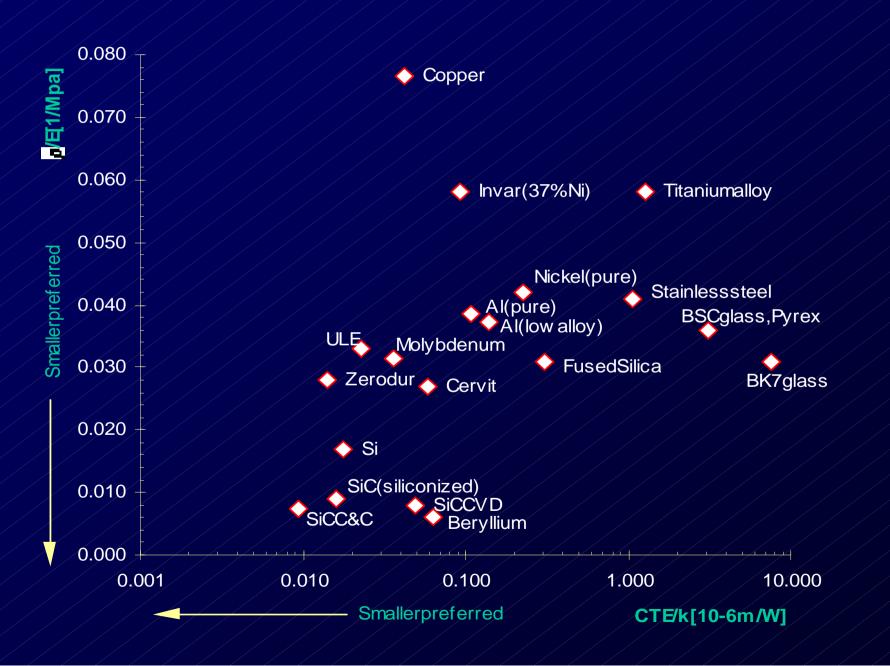
<u>Borosilicate</u> <u>Spin-casting,</u> <u>structured</u> (MirrorLab,UZ)

៸៰៴៰៸៰

Page15

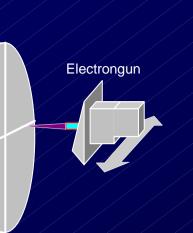
WantsomeR&D?MirrorMaterials

- <u>CategoryI</u> thermallystable.Astro-Sitall,Zerodur,Silica,U LE, (aluminium)
 - Thinactivemeniscusupto~8-m,12-14-mprobably feasible.
 - Lightweightmachined/structuredupto~2-4-m
- <u>CategoryII</u> BSCglass.

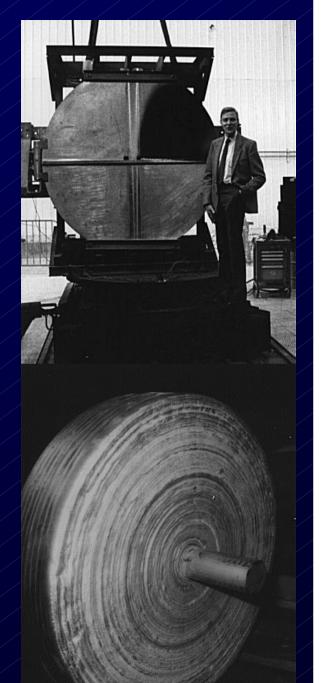

NatoSui

- Spin-caststructuredupto~8.5-m,moderatelyacti v
 - ve,needsthermalcontrol

- Loweraerialdensity, higherstiffness
- <u>CategoryIII</u> "Super-materials", Be, SiC
 - Veryhighspecificstiffness,ultra-lightweightmi rrors.
 - Maxsize~1-m,~2.5-mprobablyfeasible.

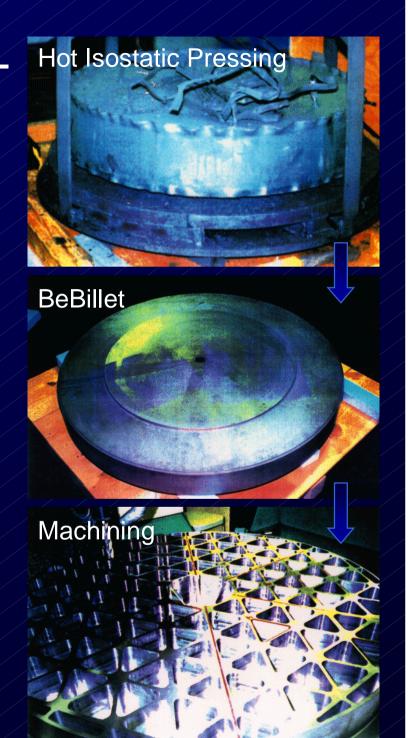

Thermal&mechanicalfigureofmerit

<u>Aluminium</u>


- 1.8-mmirrors,2technologies (backupVLTM1):
 - Electron-beamwelding
 - Build-upwelding
- Thermallycycled,foundstable within~1fringe,suitableforactive mirrors
- Ni overcoating asourceofrisk
- Roomforimprovement:residual stresses, canigen coating.
- Acost-effectivealternativeabove 1-2m
- CTEhomogeneitystillneedstobe demonstrated.

Electron-beamweldin

Weldingheads



<u>Ultra-lightweightoptics</u>

2

- Aerialdensity~40Kg/m
- Glass-ceramics(Gemini),Beryllium(VLT)
 - 1-mclassdemonstratedtodiffractionlimitedquality
 - veryhighcost(risk,processcomplexity)
- SiliconCarbide
 - historyof"problems"-aboveallcommercial!
 - Notalltechnologiessuitable-CVD unsuccessful
 - Potentiallythemostattractive:best material,fullyelastic,fastprocesses
 - Ultra-lightweight~20-30Kg/m⁻² OK upto~1-m.
 - ~50Kg/m2costeffectivewithin3-5years?

