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• Kinematics
• Kinematic mounts

• Elastic properties
• Buckling

• Deflections and natural frequencies 

• Flexures
• Plate stiffness and deflections

• Thermal effects

• Material properties
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Kinematics-1

• Structures and degrees of freedom
– Node:  defined by x,y,z position, 3 degrees of freedom (in 3-space)
– Strut:  a single degree of freedom constraint, 

• axial loads only
• cables take only tension

– Object:  defined by 3 positions and 3 rotations (6 dof)
– Underdetermined, under constrained:  a mechanism
– Determinate, statically determinate:  all positions just constrained
– Indeterminate, over determined, over constrained
– Space frames, trusses:  structure of nodes and struts
– Pin joints, ball joints, spherical joints:  joints only take axial loads, no 

torques
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Determinate structures

• 2 dimensional
– N = # of nodes (2 degrees of freedom/node)
– S = # of struts
– S = 2N-3 (overall position and rotation still unconstrained)

• 3 dimensional
– N = # of nodes (3 degrees of freedom/node)
– S = # of struts
– S = 3N-6 (overall position and rotation still unconstrained)
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Geodesic structures

• A 3D determinate structure requires S = 3N-6

• Euler’s theorem says N-S+F = 1 (for 2 dimensional 
surface)

3-3+1=1

5-5+1=1

5-6+2=1

6-7+2=1
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Geodesic Structures-2

• If we take a 2-dimensional faceted structure and fold it 
into 3 dimensions, we add a face.  Thus we have proven:

• Euler’s theorem says N-S+F = 2 (for 3 dimensional 
surface)

• If this surface is all triangles, 3F=2S

• Eulers theorem then says 3N-S=6, or S=3N-6

• Conclusion:  
– A geodesic structure with all triangular faces is determinate
– A geodesic structure with any non triangular faces is underdetermined
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Kinematic Mounts

• Kinematic mounts are systems for connecting two 
“rigid” objects to each other in a determinate fashion 
without inducing any stresses in either.

• Sometimes kinematic mounts are very readily detached 
from each other

• Examples
– Object with 3 balls is placed on plate with conical hole (3), groove (2), 

flat(1)
– Object with 3 balls is placed on plate with 2 grooves
– Object is connected to another with 6 struts
– Object is connected with whiffletrees to another object
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Elastic properties-1

• Hookes Law:  δδδδL ~ FL (linear)

Or σσσσ = E εεεε
σ is the stress (Pa or N/m2))
E is Young's modulus (Pa)
ε is the strain  (δL/L)

• Specific stiffness:  response of an elastic system under 
self weight loads has deformations that scale as E/ρρρρ.  
This is called the specific stiffness.

• Linear superposition:
– When a system responds in proportion to the applied forces, the system is 

linear
– When the response is linear, one can determine the effect of multiple forces 

on a system by adding the responses of individual force-response systems
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Elastic Properties-2

• [Non-linear systems exist]
– Large deflections of systems that change geometry
– Balls pressed against each other
– Belleville washers
– Large deflections of flat diaphragms

• Stiffness, spring constants (linear)
– δL=LδF/EA (compression of a rod with cross section A, length L, applied 

force δF)
– Or, δF = kδL, k = EA/L
– In general dF/dL is the spring constant
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Buckling

• Thin struts or columns can buckle if put under too much 
compressive force.  For thin columns Euler showed that 
the critical force that will cause buckling is given by:

– Where L  is the column length
– r is the radius of gyration
– I is the moment of inertia ( = πa4/4 for solid rod)
– n is the end condition
– n = 1 both ends can pivot
– = 2 one end fixed, other can pivot
– = 4 both ends fixed
– = 0.25 one end fixed, other free

Fcrit = nπ 2 EI

L2 = nπ 2 EA

(L / r )2
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Buckling-2

• Buckling is a phenomenon where the column bows 
sideways under axial load, once the critical load is 
reached.  This may or may not damage the column.

• For thin walled tubing, 

• Example:  If we want the tube to yield (exceed its elastic 
limit) just as it buckles, and it is a high strength material 
(yield stress ~ 0.01E), 

– Fcrit/EA = 0.01, implies
– L/r = 31

r =
a

2
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Deflections and Natural frequencies

• Lowest frequency of a structure is often interesting and can 
give some sense of its stiffness and resistance to external loads

• One can estimate the frequency by measuring or calculating 
the deflection of the system under gravity- self weight 
deflection.

• then,  following the physics of a mass on a spring,

• Thus, if δδδδ = 1 mm, f = 15.8 Hz

• Although not perfectly accurate, very useful rule of thumb

f =
1

2π
g

δ



3

16 September 2002 JEN Structural Mechanics 13

NATO

Flexures

• Consider axial deflections of a loaded rod

• Consider the bending of a rod loaded at its end

• A flexure has extreme ratio of axial to lateral stiffness

δaxial =
FL

EA

F

L

δbend =
FL3

3EI
I =

πa4

4
For circular rod

R=
δ bend

δ axial

=
4

3
(
L

a
)2

F

L
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Plate Bending

• Consider circular plate that is axially supported by N 
supports, and gravity is applied in the axial direction

• When supports are optimally placed, rms deflections of 
plate are given by

g

N

δrms = γ N

q

D
(
A

N
)2 ≈ βN

a4

h2N2

ρ=density
h = plate thickness 
q = applied force/area =ρgh
a = plate radius
D = Eh3/12(1-ν)2

γN = 1.2x10-3 for large N
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Thermal Effects

• Change of temperature
– δL = αLδT or dL/dT = αL
– Dimensions will change with change of temperature
– Uniform material objects will change dimensions in a stress free fashion
– Objects with non uniform α will deform with change of temperature

• Gradient of temperature
– Uniform material objects will change shape due to a temperature gradient
– Such objects will do so in a stress free fashion
– Shape changes correspond to isothermal lines becoming curved with a 

radius of curvature of 

R=
1

α∇T
gradient

R

Material Properties

Material density Elastic Thermal Specific Thermal E/ ρρρρ K/ αααα
Modulus expansion Heat Conductivity

ρ (kg/m^3) E (GPa) α (/°K) x E6 C (J/kg/°K) K (W/m°K)
xE-3

Aluminum 6061-T6 2.71 69 23.00 960 171.00 25.5 7.43
Beryllium I70 1.85 304 11.20 1820 220.00 164.3 19.64
Steel 7.80 193 12.00 470 43.00 24.7 3.58
Silver 10.50 74 19.30 230 429.00 7.0 22.23
Copper 8.94 108 16.80 390 401.00 12.1 23.87
Molybdenum 10.21 324 5.00 247 140.00 31.7 28.00
Titanium 4.43 114 8.80 560 7.30 25.7 0.83
Magnesium 1.85 45 25.20 1000 76.00 24.3 3.02
Lead 11.34 16 29.00 130 35.30 1.4 1.22
Nickel 8.90 200 13.30 90.00 6.77
Invar 36 8.05 141 1.00 515 10.40 17.5 10.40
Silicon Carbide 3.20 455 2.40 650 155.00 142.2 64.58
Graphite Epoxy

Glass BK7 2.53 81 7.10 879 1.12 31.9 0.16
Glass F2 3.61 57 8.20 557 0.78 15.8 0.10
Glass FPL51 73 13.30 0.78
CaF2 (calcium flouride( 3.18 110 18.90 911 9.70 34.6 0.51
Pyrex 2.23 66 3.30 838 1.13 29.4 0.34
Fused Silica 2.20 73 0.56 741 1.37 33.3 2.45
ULE 2.20 68 0.03 766 1.31 30.8 43.67
Zerodur 2.53 91 0.02 821 1.64 36.0 82.00
Sapphire 3.97 400 5.60 753 30.00 100.8 5.36
MgF 3.18 169 14.00 1004 21.00 53.1 1.50
Diamond 3.51 1050 0.80 108 2600.00 299.1 3250.00

Material Properties


