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What do yot need for an interferometer?
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Which baseline 1s needed for which resolution?

Wavelength
Source of radiation Stars Gas, dust Interstellar
(T =5 10° K) (T =100 K) hydrogen
Telescope type Diameter / A=0.5 um A =10 pm A=21cm
Baseline [m]
Optical standard 1 5107 rad 10” rad -
telescope 0.1 arcsec 2 arcsec
Optical large 10 510% rad 10 rad 0.021 rad
telescope 0.01 arcsec 2 arcsec 72 arcmin
Optical 100 5107 rad 10 rad 2.1 107 rad
Interferometer 0.001 arcsec 2 arcsec 7.2 arcmin
Radio- 10 - - 2.1 107 rad
Interferometer 4.3 arcsec
Radio VLBI 10 - - 2.110° rad
4.3 mas
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Beam entrance and array configuration

source *
:JEJ ¢

« baseline vectors Bik connecting
centers of telescope entrance
apertures i and &k

telescopesi=1.. N

unit vector S pointing at coordinate
origin 9 =0 at source

* By =—Bj

 observing wavelength A determines
the angular frequencies iy = A By
at which samples of the visibility
function are taken
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Projected baselines 1

to source

-
i
z
i

baseline B,

e

beamsplitter and detectors
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delay line i

delay line k& O




Projected baselines 11

» The layout detemines the baseline vectors Eik which are present the array.

* The source declination o0 and hour angle / determine the projected
baseline Bj; (baseline as seen from the direction of the source).

 The observing wavelength A determines the set of two-dimensional
angular frequencies #;; which is measured by the interferometer.

Projected baseline: B} = Sx(B; x3)

Geometric delay: wy = By -S/A

frequency projected on i = Uik
celestial sphere: l Vik
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Projected baselines 111

( X\ northwards

Describe array geometry by
Y | eastwards

3D element positions:

KZ ) zenithwards

Compute fringe frequency and geometric delay:

—sind cosh sind sink coso Y, -Y;

U 1—cos§sinh—sin§cos§cosh sin&cosdsinh—cosEcosh —sinésind | X —X;
Vik [T 5
Zy =2

sinEsinh—cos&cosdcosh  sinécosh+cosécosdcosh —cosésind

site latitude &
source declination 0
hour angle 4
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Array configuration and Earth-rotational synthesis I

Large Binocular Telescope (LBT), Arizona
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LBT on Mt. Squirrel

Placement of interferometer elements
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Array configuration and Earth-rotational synthesis I

Large Binocular
Telescope (LBT),
Arizona

UV coverage - range
of frequencies that can
be reached by ERS

UV coverage 1s
independent of source
position with the LBT

September 2002

200

L 100

200 ~100 ‘ 100

L -100

=200

D00

LBT on Mt. Squirrel

Earth-rotational synthesis, source declination 60 degrees.
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Array configuration and Earth-rotational synthesis II

200
ESO VLT Interferometer -
Cerro Paranal, Chile |
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VLT Interferometer Main Array

Placement of interferometer elements
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Array configuration and Earth-rotational synthesis II

VLTI - 4 Unit telescopes, VLTI - 4 Unit telescopes

source at 0 = -30° plus 4 Auxiliary telescopes

200

VLT Interferometer Main Array

Earth-rotational synthesis, source declination -30 degrees.

September 2002
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Array configuration and Earth-rotational synthesis II

2011 00

Dependence of VLTI
,,sausage pattern® on
source declination
(+10°, -10°, -30°, -50°,
-70°)

| 200
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Array configuration and Earth-rotational synthesis 111

200
Keck Imaging Interferoemtric
Array - Mauna Kea, Hawaii m
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Keck interferometric array with 4 outriggers

Placement of interferometer elements
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Array configuration and Earth-rotational synthesis 111

200

-200

=200

200

Keck interferometric array with 4 outriggers

September 2002  Earth-rotational synthesis, source declination 45 degrees.
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Principle of a Multiple Telescope Interferometer

e Telescopes i, ..., k track sources during observation
» Baselines between telescopes rotate with Earth
change with source declination and hour
angle = extended coverage of Fourier ("UV") plane
e Electromagnetic fields are superimposed at point of beam
combination
changes with source declination and hour angle
= required
o Off-set sources suffer a differential geometric delay = differential
optical delay tracking required
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Methods of beam combination

Beam combination

single mode

The detected field of
view 1s equivalent to
the Airy disk of an
array element
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Methods of beam combination

:

o= .
- -
[~ |
:_:_ - S i ) S
Ay |
- an
[ - T
L~ 1
image plane : pupil plane
Focused and collimated The red (on-axis) beam only is used for
beams of a single array single mode beamcombination.

element accepting an
extended field of view.
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Single mode beam combination

Cl

C2

from array single pixel
clements ; detectors
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Popular implementation with
optical fibers

Field stops with size of Airy
disk and beamsplitteralso
possible.

Fibers make good mixers
once the light has entered.

Two-way combiner (top)

and three-way combiner
(below).
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Single mode beam combination

Intensities from Telescopes A and B: 1,1,
Measured intensities at Detectors 1 and 2: C, C,

Measured intenstites as function of delay A:

Cl :[1+[2 +2 [1]2 Vsm(Zﬂ:%—l—(p)
Cy = I +1, 21T, Vsin2 2 +¢)

-G
4 /1,1,

Calibrated visibility:
=V sin (277: o q))

Visibility V due to all sources in the Airy disk of the elements
Fringe detection by scanning of coherence envelope :

IOTA/FLUOR, VLTI/VINCI
Beam combination with fibers of more than two elements prone to baseline

dependent errors!
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VLTI/VINCI GUI

o e (R +|
Ty
g

I:' SAVE I Seand to remore ;|
[Dump to ASCII files J S

Sirligs-08%

Dirplay charnel

i
oQ

Spesteum displiy

 Amplituds

120

140

i
(L2

i i i i i
190 300 220 240 257 |

September 2002

180—

Hedian: | 0.7234
Skew: 05  Blaz:[ 04
Fhidard dbvigtinn

Felitive
[73 =

Etandard ereor
_Meaehte  Relitive
ool | os ®

Piaton eaise /
Aokal potse !I:I 124

Correlyted magnittude:| =12

E WL T U\/

[

—
——

%EMWVH“W‘W‘

5|8 +|
ﬁJ

L.L..

e
prn

| I =

L LA
1:00

L] ] LR |
120 140 200 220 240

10—
B0~
D'-'ﬂ'!f‘“"'" 60= ¥ i 1 ¥ n ¥ 1 ¥ e |
: 0 = 041 0160 D480 0200 2 0ZFM0 02€0 00 0280 2 OEDO 7
i - Flot_ *' — wm.
w2 = Relative tire | 300 paints

2000~ W sz (R +|
E | T -
1250~ q Jyﬁ
*’j; M#Mw‘wm., m‘ LLN Iuﬂ{ wgq«w ] wh
u} W l‘ﬂ Z'I:':r 2?? EW I-'#J- ¢WI-Q:
21

Optics in Astronomy



The visibility of which source 1s detected with
pupil plane beam combination?

The common visibility of all 7 S
sources which are allowed to , & AN
interfere! ) Lo
! B s\ \
Field stops need to be used for ’ e

I
sources which are not desired. "
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Multimode pupil plane beamcombination
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Detection thesame as with single mode beamcombination

Visibility V due to all sources in the Airy disk of the elements

Fringe detection by:

- modulation of optical path length: NPOI, PTI, KIIA, VLTI/MIDI

- scanning of coherence envelope: COAST
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Multimode pupil plane beamcombination

Butcquiding  eombining

combiner of COAST L e

Multi-zhannel
Bpectrameter

Example: beam_ Aequisition  Visible beam- : _ _

Up to four elements
can be combined
simultaneously

Wb kR
selclion:

remaiable
dichrics

#*  lncoming beams afier
path compenmtiaon

A

}

lncoming brams — Path compensation
from 4elesca pes Drichraics reflect [Am—
[ 1591 mm abave) =50 nm upsnm
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Multimode 1image plane beamcombination

-

: < -
Focus collimated beams from
clements with the same optical |
element onto a common detector — T_/ —
Easy simultaneous combination of
more than two elements
Easy detection of fringes in an
extended field
Needs detectors with many pixels
Image plane fringe detection by
fringe dispersion: GI2T / \
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Imaging

beamcombination example:

Pupil

| masking at ESO/NTT

September 2002
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Imaging

beamcombination example:

Pupil

| masking at ESO/NTT

program star reference star

September 2002
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Fizeau vs. Michelson interferometers:
a continuing confusion

Def.: A Fizeau stellar interferometer is an interferometer where the
Helmholtz-Lagrange (optical) invariant 1s preserved throughout
the optical train.

A Michelson stellar interferometer is an interferometer where
this 1s not the case.

Helmholtz-Lagrange invariant: the product of (object sided)
field angle and radius of entrance pupil. This quantity characterizes
a given optical system.
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Fizeau vs. Michelson interferometers:
a continuing confusion

Fizeau interferometer Michelson interferometer
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Field effect in a Michelson interferometer

September 2002 Optics in Astronomy 30



