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Abstract~
The structure of Haniiltoniansymmetry reductions of the Wess—Zumino—Novikov—Witten (WZNW) theories by first

classKac—Moody (KM) constraintsis analysedin detail. Lie algebraic conditionsare given for ensuringthe presenceof exact
integrability,conformalinvarianceand W-symmetryin the reduced theories.A Lagrangean,gaugedWZNW implementation
of the reduction is established in the general caseand thereby the path integral as well as the BRST formalismaresetup
for studying the quantum version of the reduction. The general resultsareapplied to a numberof examples.In particular,a
W-algebra is associatedto eachembeddingof sl(2) into the simple Lie algebrasby usingpurely first classconstraints. The
primaryfields of theseW-algebrasaremanifestly given by the sl(2) embeddings,but it is also shownthat there is an sl(2)
embeddingpresent in every polynomialandprimaryKM reduction andthat the Ru-algebrashave ahidden sl(2) structure
too. New generalizedToda theoriesare found whosechiral algebrasare the W-algebrasbased on the half-integral sl(2)
embeddings,and the W-symmetry of the effective action of thosegeneralizedToda theoriesassociatedwith the integral
gradingsis exhibited explicitly.
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1. Introduction

Dueto their intimaterelationshipwith Lie algebras,thevariousone-andtwo-dimensionalToda
systemsareamongthemostimportantmodelsofthetheoryofintegrablenon-linearequations[1—
191. In particular,the standardconformalTodafield theories,which aregiven by theLagrangean

= ~
21 2KijOoiO~coi—~m~exP(~EKijo.1)J‘ (1.1)

i,j=1 ~ 1=1 j=1

whereK is a coupling constant,~ is theCartanmatrix and the ct, are thesimplerootsof asimple
Lie algebraofrank I, havebeenthe subjectofmanystudies[1,3,4,8—13,19].It hasbeenfirst shown
by LeznovandSaveliev [1,3] that theEuler—Lagrangeequationsof (1.1) canbe written as azero-
curvaturecondition, are exactly integrable,and possessinterestingnon-linearsymmetry algebras
[3,4,10,11,13,19].Thesesymmetryalgebrasare generatedby chiral conservedcurrents,and are
polynomialextensionsof thechiral Virasoroalgebrasgeneratedby the tracelessenergy—momentum
tensor.The chiral currentsin questionare conformalprimaryfields, whoseconformalweights are
givenby theordersoftheindependentCasimirsofthecorrespondingsimpleLie algebra.Polynomial
extensionsoftheVirasoroalgebraby chiral primaryfieldsaregenerallyknownasW-algebras[20],
whichareexpectedto playan importantrole in theclassificationofconformalfield theoriesandare
in thefocusof currentinvestigations[20—29].The importanceofTodasystemsin two-dimensional
conformalfield theoryis in fact greatlyenhancedby their realizingtheW-algebrasymmetries.

It hasbeendiscoveredrecently that the conformalTodafield theoriescanbe naturallyviewed
as Hamiltonianreductionsof the Wess—Zumino—Novikov—Witten(WZNW) theory [12,131.The
main featureof theWZNW theoryis its affme Kac—Moody (KM) symmetry,which underliesits
integrabiity [30,311.The WZNW theory providesthe most“economical” realizationof the KM
symmetry in the sensethat its phasespaceis essentiallya direct productof the left x right KM
phasespaces.The WZNW —~ Toda Hamiltonian reduction is achievedby imposingcertainfirst
class,conformally invariant constraintson the KM currents,which reducethe chiral KM phase
spacesto phasespacescarrying the chiral W-algebrasas their Poissonbracketstructure [12,13].
Thus theW-algebrais relatedto thephasespaceof the Todatheoryin the sameway as the KM
algebrais relatedto thephasespaceof theWZNW theory. In theabovemanner,theW-symmetry
of theTodatheoriesbecomesmanifestby describingthesetheoriesas reducedWZNW theories.
This way of looking at Todatheorieshas alsonumerousother advantages,describedin detail in
ref. [13].

The constrainedWZNW (KM) setting of the standardToda theories (W-algebras)allows for
generalizations,someof whichhavealreadybeeninvestigated[14—18,26—29].An importantrecent
developmentis the realizationthat it is possible to associatea generalizedW-algebrato every
embeddingoftheLie algebrasi (2) into thesimple Lie algebras[16—18].ThestandardW-algebra,
oceurringin Toda theory, correspondsto the so called principal sl(2). In fact, thesegeneralized
W-algebrascanbe obtainedfrom theKM algebraby constrainingthecurrentto thehighestweight
gauge,which hasbeenoriginally introducedin ref. [13] for describingthe standardcase.Another
interestingdevelopmentis the t4’~-a1gebrasintroducedby Bershadsky[26] and further studied
in ref. [28]. It is known that the simplest non-trivial case T4~3

2, which was originally proposed
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4 L. Fehér et a!., Wess—Zumino—Novikov—Witten theories

by Polyakov [27], falls into a specialcaseof the W-algebrasobtainedby the si (2) embeddings
mentionedabove. It hasnot beenclear, however,as to whetherthetwo classesof W-algebrasare
relatedin general,or to what extent onecan furthergeneralizethe KM reductionto achievenew
W-algebras.

In the presentpaper,we undertakethe first systematicstudy of the Hamiltonianreductionsof
theWZNW theory,aiming at uncoveringthegeneralstructureof the reductionand, at the same
time, try to answertheabovequestion.Variousdifferent questionsarisingfrom this main problem
arealso addressed(seecontents),and someof themcanbe examinedon their own right. As this
providesour motivationand in fact most of the later developmentsoriginatefrom it, we wish to
recallherethemain pointsof theWZNW —~ Todareductionbeforegiving amoredetailedoutline
ofthecontent.

To makecontactwith theTodatheories,we considertheWZNW theory*)

Swz(g) = !.~Jd2x,~”Tr(g O,~g)(g’OL,g)— Tr(g’ dg)3, (1.2)

for a simple, maximally non-compact,connectedrealLie groupG. In otherwords, weassumethat
thesimple Lie algebra,Q, correspondingto 6 allows for a Cartandecompositionoverthefield of
real numbers.The field equationof theWZNW theorycanbe written in theequivalentforms

t~_J=0 or o~J=o, (1.3)

where

J = Ka~g.g-’, J = —Kg’O_g. (1.4)

Theseequationsexpressthe conservationofthe left andright KM currents,J and J, respectively.

The generalsolutionof the WZNW field equationis given by thesimple formula

g(x~,x)=g~(x~)•g~(x), (1.5)

whereg~.andg~are arbitraryG-valuedfunctions,i.e., constrainedonly by theboundarycondition
imposedon g.

Let now M_, M
0 and M÷be thestandardgeneratorsoftheprincipal si(2) subalgebraofQ [32].

By consideringtheeigenspacescm of M0 in the adjoint of Q, adM0 = EM0, ], one can define a
gradingof g by theeigenvaluesm. Under theprincipal sl (2) this gradingis an integralgrading, in
fact thespinsoccurringin thedecompositionoftheadjoint ofg aretheexponentsofg, which are
relatedto the ordersof the independentCasimirsby a shift by 1. It is alsoworth noting thatthe
grade0 part of

c=c+÷c0+c, c±=~c±m, (1.6)

is a Cartansubalgebra,and (by using someautomorphismof the Lie algebra)one can assume
that thegeneratorM0 is given by the formula M0 = ~ ~ H~,whereH0 is the standardCartan

*) The KM level k is —4,uc. The space—timeconventionsare:ijj~ = ~ = 1 and x±= ~(x°±x’). The WZNW field
g is periodic in x

1 with period2irr.
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generatorcorrespondingto thepositive root~,andthegeneratorsM±arecertainlinearcombinations
ofthestepoperatorsE±01correspondingto the simple roots~,, i = 1, . .. ,rankg.

The basicobservationof refs. [12,13]hasbeenthat thestandardToda theorycan be obtained
from theWZNW theory by imposing first classconstraintswhich restrict thecurrentsto take the
following form:

J(x) = icM_ ±j(x), j(x) E ~ ~ (1.7a)
J(x) = —~cM~+3(x), 3(x) e (g0 +g..). (1.7b)

(For clarity, we note that one should in principle include some dimensionalconstantsin M±,
which are dimensionless,but suchconstantsare alwaysput to unity in this paper,for simplicity.)
To derive the Toda theory (1.1) from the WZNW theory (1.2), one usesthe generalizedGauss
decompositiong = g~. g0~g_ of theWZNW field g, wherego,~,arefrom thesubgroupsG0,~of
G correspondingto theLie subalgebrasc0,±,respectively.In this frameworktheToda fields co are
given by themiddle pieceof theGaussdecomposition,go = exp[~~ çoH1], which is invariant
underthe triangularKM gaugetransformationsbelongingto thefirst classconstraints(1.7). Note
that heretheelementsH1 E g0 are thestandardCartangeneratorsassociatedto thesimple roots. In
fact, theTodafield equationcan be deriveddirectly from theWZNW field equationby inserting
the Gaussdecompositionof g into (1.3) andusing the constraints(1.7). The effectiveaction of
thereducedtheory, (1.1), canalso be obtainedin a naturalway, by using theLagrangean,gauged
WZNW implementationof theHamiltonianreduction [13].

In theirpioneeringwork [1,3],LeznovandSavelievprovedtheexactintegrabiityoftheconformal
Toda systemsby exhibiting chiral quantitiesby using the field equationand the special graded
structureof the Lax potentialA±,in termsof which the Toda equationtakesthe zero-curvature
form

[O÷—A~,&—A_J=0. (1.8)

In our framework theexactintegrabilityof Toda systemsis seenas an immediateconsequenceof
the obvious integrability of the WZNW theory,which survivesthe reductionto Toda theory. In
other words,the chiral fields underlyingthe integrabiity of the Todaequationare availablefrom
thevery beginning,that is, theycomefrom thefields enteringthe left x right decompositionofthe
generalWZNW solution (1.5).Furthermore,theTodaLax potentialitself emergesnaturallyfrom
thetrivial, chiral Lax potentialoftheWZNW theory. To seethis onefirst observesthat theWZNW
field equationis a zero-curvaturecondition, sinceonecanwrite, for example,the first equationin
(1.3) as

[O÷—J,O...—0]=0. (1.9)

Using theconstraintsofthereduction,theTodazero-curvaturecondition (1.8) of refs. [1,3] arises
from (1.9) by conjugatingthis equationby g~’(x+ , x ), namely by the inverseof the upper
triangularpieceof the generalizedGaussdecompositionof the WZNW field g [18].

The W-symmetryofthe Todatheoryappearsin the WZNW settingin a very direct and natural
way. Namely, one can interpret the W-algebraas the KM Poissonbracketalgebraof the gauge
invariantdifferential polynomialsof the constrainedcurrentsin (1.7). Concentratingon the left
sector,thegaugetransformationsact on thecurrentaccordingto

J(x) ~+e~r~ J(x) e_a(~~r~+K(ea(xf))F ~ (1.10)
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wherea(x+) E c+ is an arbitrarychiral parameterfunction.*) The constraints(1.7)arechosenin
sucha way that thefollowing Virasorogenerator:

LM0(x)EL~(x)—Tr(MoJ’(x)), Liu,~(x)=~_Tr(J2(x)), (1.11)

is gaugeinvariant,which ensurestheconformalinvarianceofthe reducedtheory.
Oneobtainsan equivalentinterpretationoftheW-algebraby identifying it with theDiracbracket

algebraof thedifferential polynomialsofthecurrentcomponentsin certaingauges,which aresuch
that a basis of the gaugeinvariant differential polynomials reducesto the independentcurrent
componentsafter thegaugefixing. We call the gaugesin questionDrinfeld—Sokolov (DS) gauges
[13], since such gaugeshasbeen usedalso in ref. [51. They have the nice propertythat any
constrainedcurrentJ (x) canbe broughtto thegaugefixed form by auniquegaugetransformation
dependingon J(x) in a differentialpolynomialway. ThemostimportantDS gaugeis thehighest
weight gauge [13], which is defmedby requiring the gaugefixed currentto be of the following
form:

J~(x)= ,cM_ + j~j(x), j~(x)E Ker(adM~), (1.12)

whereKer(adM ) is thekerneloftheadjointofM~.In otherwords,j~(x) is restrictedto be an
arbitrary linear combinationof thehighestweight vectorsofthesI(2) subalgebra~.in theadjointof
g. The specialpropertyof thehighestweight gaugeis that in this gaugetheconformalproperties
becomemanifest.Of course,thequantity L~(x) obtainedby restrictingLM0 (x) in (1.11) to the
highest weight gaugegeneratesa Virasoro algebraunder Dirac bracket. [Note that in our case
Lr~gj(x) is proportionalto the M~-componentof fr~j(x).] The importantpoint is that, with the
exceptionof the M~-component,the spin s componentof j~(x) is in fact a primary field of
conformalweight (s + 1) with respecttoL~(x) undertheDirac bracket.Thus thehighestweight
gaugeautomatically yields a primary field basis of the W-algebra, from which one seesthat the
spectrumof conformalweightsis fixed by thesl (2) contentof theadjoint of g [13].

In theabovewe arrivedat thedescriptionof theW-algebraas a Diracbracketalgebraby gauge
fixing the first classsystemof constraintscorrespondingto (1.7). However,it is clearnow that it
would havebeenpossibleto define theW-algebraasthe Dirac bracketalgebraof thecomponents
of j~ in (1.12) in the first place. Once this point is realized, a natural generalizationarises
immediately [16—181.Namely, one can associatea classicalW-algebrato any sl(2) subalgebra
S = {M, M0, M~} ofany simpleLie algebraç, by defmingit to be theDiracbracketalgebraof
the componentsof frsd in (1.12),whereonesimply substitutesthegeneratorsM±of the arbitrary
sl (2) subalgebraS for thoseof theprincipal sl(2). As we shall seein this paper,this Diracbracket
algebrais apolynomialextensionoftheVirasoroalgebraby primaryfields, whoseconformalweights
are relatedto the spinsoccurringin thedecompositionof the adjoint of g underS by a shift by
1, in completeanalogywith the caseof the principal si (2). We shall designatethe generalized
W-algebraassociatedto thesl (2) embeddingS asW~.

With themain featuresof theWZNW —~ Todareduction and theabovedefinition of the W~-
algebrasat ourdisposal,now we sketchthephilosophyandtheoutlineofthepresentpaper.We start
by giving the mostimportantassumptionunderlyingour investigations,which is that we consider
thosereductionswhichcanbe obtainedby imposingfirst classKM constraintsgeneralizingtheones

~ Throughoutthe paper,the notationf’ = 2O~fis usedfor everyfunction f, including the spatialö-functions.For a
chiral functionf (x +) onehasthenf’ = 8~f.
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in (1.7).To be moreprecise,ourmostgeneralconstraintsrestrict thecurrentto takethefollowing
form:

J(x) = KM + j(x), j(x) � F~L, (1.13)

whereM is someconstantelementof the underlyingsimpleLie algebrag, andF’ is thesubspace
consistingoftheLie algebraelementstraceorthogonalto somesubspaceF ofg. We notethat earlier
in (1.7a) we havechosen1” = c+ and M = M_, but we do not needany sl(2) structurehere.
The whole analysisis basedon requiring thefirst-classnessofthe systemoflinear KM constraints
correspondingthe pair (F,M) accordingto (1.13).However,this first-classnessassumptionis not
asrestrictiveasoneperhapsmight think at first sight. Ourfirst classmethod is in fact capableof
coveringmostHamiltonianreductionsoftheWZNW theoryconsideredto date.Themanytechnical
advantagesof usingpurely first classKM constraintswill be apparent.

The investigationsin this paperare organizedaccordingto threedistinct levelsof generality.At
themostgenerallevel weonly makethefirst-classnessassumptionanddeducethefollowing results.
First,we givea completeLie algebraicanalysisoftheconditionson thepair (F, M) imposedby the
first-classnessoftheconstraints.We shall seethat F in (1.13)hasto be a subalgebraof ~ on which
the Cartan—Killing form vanishes,andthat every suchsubalgebrais solvable.The Lie subalgebra
F will be referredto as the “gaugealgebra”of the reduction.For a given F, the first-classness
imposesa furtherconditionon theelementM, andwe shall describethespaceoftheallowedM’s.
Second,we establishagaugedWZNW implementationof thereduction,generalizingtheone found
previously in the standardcase[13]. This gaugedWZNW settingof thereductionwill be first seen
classically,but it will be also establishedin the quantum theory by consideringthe phasespace
pathintegral of theconstrainedWZNW theory.Third, thegaugedWZNW frameworkwill be used
to setup theBRST formalismfor thequantumHamiltonianreductionin thegeneralcase.Fourth,
by making the additionalassumptionthat the left and right gaugealgebrasaredual to eachother
with respectto the Cartan—Killing form, we will be able to give a detailedlocal analysisof the
effective theoriesresultingfrom thereduction.This duality assumptionwill also be relatedto the
parity invarianceof theeffectivetheories,which is satisfiedin the standardToda case,where the
left andright gaugealgebrasare~ and ~.. in (1.6),respectively.In general,theWZNW reduction
not only allows us to makecontactwith known theories,like theToda theory in (1.1),where the
simplicity andthe largesymmetryof the“parent” WZNW theoryare fully exploitedfor analyzing
them, but also leadsto newtheorieswhich are“integrableby construction”.

At the next level of generality,we study the conformally invariant reductions.The basic idea
here is that one can guaranteethe conformal invarianceof the reducedtheory by exhibiting a
Virasorodensitysuchthat thecorrespondingconformalactionpreservestheconstraintsin (1.13).
Generalizing(1.11),we assumethatthis Virasorodensityis oftheform

LH(X) = Lgj~j(x)—Tr(HJ’(x)) , (1.14)

whereH issomeLie algebraelement,to be determinedfrom theconditionthat Ljj weaklycommutes
with thefirst class constraints.We shall describetherelationswhich are imposedon thetriple of
quantities (1’,M,H) by this requirement,andtherebyobtain a Lie algebraicsufficient condition
for conformalinvariance.

At the third level of generality,we dealwith polynomial reductionsand W-algebras.The above
mentionedsufficient condition for conformal invariance is a guaranteefor Ljj being a gauge
invariantdifferentialpolynomial.Weshallprovidean additionalconditionon the triple ofquantities
(F, M, H) whichallowsoneto constructout ofthecurrentin (1.13)acompletesetofgaugeinvariant
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differentialpolynomialsby meansof apolynomialgaugefixing algorithm.TheKM Poissonbracket
algebraofthegaugeinvariantdifferentialpolynomialsyields apolynomialextensionoftheVirasoro
algebrageneratedby LH. We shall prove that the existenceof a completeset of primary fields
in this algebrarequiresthe existenceof an elementM÷� F which togetherwith M.. M and
M0 H forms an si(2) subalgebraof g. This implies that the conformal weights of the primary
fields are necessarilyhalf-integers.The mostimportantapplicationof our sufficient condition for
polynomiality concernsthe Wg-algebras,for which the sl (2) structureof the primary fields is
manifest,asmentionedpreviously.

Let usrememberthat, for an arbitrary si(2) subalgebraS of g, the Wg-algebracan be defined
as theDiracbracketalgebraofthehighestweightcurrentin (1.12) realizedby purely secondclass
constraints.However,we shallseein thispaperthatthesesecondclassconstraintscanbereplacedby
purely first classconstraintsevenin thecaseof arbitrary, integralor half-integral,si (2) embeddings.
Sincethefirst classconstraintssatisfyour sufficient conditionfor polynomiality,we canrealizethe
We-algebraas the KM Poissonbracketalgebraof thecorrespondinggaugeinvariantdifferential
polynomials.After havingour handson first classKM constraintsleading to theWe-algebras,we
shall immediatelyapply our generalconstructionto exhibiting reducedWZNW theoriesrealizing
theseW-algebrasastheir chiral algebrasfor arbitrarysl (2) embeddings.In thenon-trivial caseof
half-integralsl(2) embeddings,thesegeneralizedTodatheoriesrepresenta newclassofintegrable
models,whichwill be studiedin somedetail. It is alsoworth notingthat realizingtheWi-algebra
as a KM Poissonbracket algebraof gaugeinvariantdifferential polynomialsshould in principle
allow for quantizingit throughthe KM representationtheory, for exampleby using the general
BRST formalismwhich will be setup in this paper.As a first step,we shall give a conciseformula
for theVirasorocentreofthis algebrain termsof the level oftheunderlyingKM algebra.

The existenceof purely first class KM constraintsleading to the Wg-algebramight be perhaps
surprisingto the reader,sinceearlier in ref. [161it wasclaimedto be inevitably necessaryto useat
leastsomesecondclassconstraintsfrom thevery beginning,whenreducingtheKM algebrato
in thecaseofa half-integralsi (2) embedding.Contraryto theirclaim, we will demonstratethat it is
possibleandin fact easyto obtain theappropriatefirst classconstraintswhich lead to wg. Roughly
speaking,this will be achievedby discarding“half’ of thoseconstraintswhich form thesecondclass
part in the mixed systemof theconstraintsimposedin ref. [16]. The mixed systemof constraints
can be recoveredby a partial gaugefixing of our purely first class KM constraints.Similarly,
Bershadsky’sconstraints[26], usedto define the ~1’~-algebra,arealsoamixed systemin theabove
sense,i.e., it containsboth first and secondclassparts. We can also replacetheseconstraintsby
purely first classoneswithout changingthe fmal reducedphasespace.In this procedurewe shall
uncoverthehiddensl (2) structureof the W~-algebras,namely,we shallidentify themin generalas
further reductionsof particularWg-algebras.

The study of WZNW reductionsembracesvarious subjects,such as integrablemodels, W-
algebrasandtheir field theoreticrealizations.We hopethatthe readerswith different interestswill
find relevant resultsthroughoutthis paper,and find an interplay of general considerationsand
investigationsof numerousexamples.

2. Generalstructureof KM andWZNW reductions

The purposeof this chapteris to investigatethe generalstructureof thosereductionsof the
KM phasespaceandcorrespondingreductionsof thefull WZNW theory which canbe defmedby
imposingfirst classconstraintssettingcertain currentcomponentsto constantvalues.In therestofthe
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paper,weassumethat theWZNW group,G, is aconnectedrealLie groupwhoseLie algebra,Q, is a
non-compactreal form ofacomplexsimpleLie algebra,~. We shallfirst uncovertheLie algebraic
implications of theconstraintsbeing first class, and also discussa sufficient condition which may
be usedto ensuretheir conformalinvariance.In particular,we shall seewhy thecompactreal form
is outside our framework. We thenset up a gaugedWZNW theory which providesa Lagrangean
realizationof theWZNW reduction,for thecaseofgeneralfirst classconstraints.Finally, we shall
describethe effective field theoriesresulting from the reduction in somedetail in an important
specialcase,namelywhentheleft andright KM currentsare constrainedfor suchsubalgebrasof ~
whicharedual to eachotherwith respectto theCartan—Killing form.

2.1. First classandconformallyinvariant KM constraints

Here we analysethe generalform of the KM constraints,which will be usedsubsequentlyto
reducetheWZNW theory.The analysisappliesto eachcurrentJ and J separately,so we choose
one of them, J say, for definiteness.To fix the conventions,we first note that theKM Poisson
bracketreads

{(u,J(x)), (v,J(y))}I~o.~o= ([u,v],J(x))ô(x’ —y’) + ~c(u,v)ô’(x’ —y’), (2.1)

whereu and v arearbitrarygeneratorsofg andthe inner product(u, v) = Tr (u.v) is normalized
so that the long rootsofc~have length squared2. This normalizationmeansthat in termsof the
adjoint representationonehas (u, v) = (1/2g)tr (ada. ad1,),whereg is thedualCoxeternumber.
It is worth notingthat (u, v) is theusualmatrix tracein thedefining,vectorrepresentationfor the
classicalLie algebrasA1 and C,, and it is ~ x trace in the defining representationfor the B, and
D1 series.We also wish to pointout that the KM Poissonbrackettogetherwith all thesubsequent
relationswhich follow from it hold in thesameformboth on theusualcanonicalphasespaceandon
thespaceoftheclassicalsolutionsofthetheory.This is theadvantageof usingequaltime Poisson
bracketsand spatial 6-functionseven on the latterspace,where J(x) dependson x = (x°,x’)
only throughx + (seethefootnoteon page6).

The KM reduction we consideris defined by requiring the constrainedcurrentto be of the
following specialform:

J(x)=KM+j(x), j(x)�F’, (2.2)

whereF is somelinear subspaceandM is someelementof g. Equivalently, theconstraintscan be

given as
= (y,J(x))—ic(~’,M)=0, Vy�F. (2.3)

In words, our constraintsset the currentcomponentscorrespondingto F to constantvalues. It is
clearboth from (2.2) and (2.3) that M canbe shiftedby an arbitraryelementfrom thespaceF’
without changingtheactualcontentof theconstraints.This ambiguityis unessential,sinceonecan
fix M, for example,by requiringthat it is from somegiven linear complementofF~in g, which
canbe chosenby convention.

In our methodwe assumethat theabovesystemof constraintsis first class,and nowwe analyse
the contentof this condition. Immediatelyfrom (2.1),we have*‘)

{~(x),q5p(y)} = ~~[a,flJ (x)ö(x
1 —y’) + WM(Q~,fl)ö(X’ y’) + (c~,fl)J’(x’ —yt), (2.4)

*) For simplicity, we setK to 1 in therestof thepaper,exceptin ch. 5, whereK occursin the formulaof the Virasoro
centre.



It) L. Fehér et a!., Wess—Zumino—Novikov—Wittentheories

wherethesecondtermcontainstherestrictionto F ofthefollowing anti-symmetrictwo-form of c:
WM(U,V)E(M,[U,V]), vu,vEg. (2.5)

It is evidentfrom (2.4) thattheconstraintsare first classif, andonly if, we have

[cr, fl]EI’, (cE,fl) = 0, wM(c~,fl) = 0, forV~,fleF. (2.6)

This meansthat the linear subspaceF hasto be a subalgebraon which theCartan—Killingform and

WMvanish.It is easyto seethatthethreeconditionsin (2.6) canbe equivalentlywritten as

[F,F’]cF’, FcF1, [M,F]cF’, (2.7)

respectively.Subalgebras1’ satisfyingF c F’ exist in everyreal form of thecomplex simpleLie
algebrasexceptthecompactone, sincefor thecompactreal form theCartan—Killing innerproduct
is (negative)defmite.

We notethat for agiven F thethird conditionandtheambiguityin choosingM canbe concisely
summarizedby the (equivalent)statementthat

Me [F,F1-’-/F’ . (2.8)

The constraintsdefinedby the zero elementof this factor spaceare in a sensetrivial. It is clear
that, for a subalgebraI’ suchthat 1’ c F-1-, the abovefactor spacecontainsnon-zeroelementsif
and only if [F,F] ~ F. Actually this is always so becauseF c F’ implies that F is a solvable
subalgebraof g. To prove this, we first note that, if F is not solvable, then,by Levi’s theorem
[33], it containsasemi-simplesubalgebra,in which onecanfind either an so(3,R) or an sl(2,R)
subalgebra.Fromthis oneseesthat thereexistsat leastonegeneratorA ofF for which the operator
ad

2 is diagonalizablewith realeigenvalues.It cannotbe that all eigenvaluesof ad2 are 0 since~ is
a simpleLie algebra,andfrom this onegetsthat (A, A) ~ 0, which contradictsF c F’. Therefore
onecanconcludethat F is necessarilyasolvablesubalgebraof g.

The secondcondition in (2.6) can be satisfied,for example,by assumingthat every y E F is
a nilpotentelementof g. This is true in the concreteinstancesof the reductionstudiedin chs. 3
and 4. We note that in this caseF is actuallya nilpotent Lie algebra,by Engel’s theorem [331.
However, thenilpotencyof F is not necessaryfor satisfyingF c J’~L~In fact, a solvablebut not
nilpotentF can be foundin appendixA.

Thecurrentcomponentsconstrainedin (2.3) arethe infinitesimal generatorsof the KM trans-
formationscorrespondingto thesubalgebraF, which acton theKM phasespaceas

J(x) —÷ e~~”J(x) e_ x~)y~+ (e x~)ve)F e_~~”, (2.9)

where thea’ (x +) areparameterfunctionsandthereis a summationover somebasisYt of F. Of
course,thefirst classconditionsareequivalentto thestatementthattheconstraintsurface,consisting
ofcurrentsoftheform (2.2), is left invariantby theabovetransformations.From thepoint of view
of the reducedtheory, thesetransformationsare to be regardedasgaugetransformations,which
meansthat thereducedphasespacecanbe identified asthespaceof gaugeorbits in theconstraint
surface.Taking this into account,we shall oftenrefer to F as the gaugealgebraof thereduction.

We nextdiscussa sufficient conditionfor theconformalinvarianceoftheconstraints.We assume
thatM ~F-’- from now on. Thestandardconformalsymmetrygeneratedby theSugawaraVirasoro
densityL1~(x) is thenbroken by the constraints (2.3), sincethey set somecomponentof the
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current,which hasspin 1, to anon-zeroconstant.The ideais to circumventthis apparentviolation
of conformalinvarianceby changingthestandardactionof theconformalgroupon theKM phase
spaceto onewhich doesleave the constraintsurfaceinvariant.One can try to generatethenew
conformalactionby changingtheusualKM Virasorodensityto thenewVirasorodensity

Lj~(x)= LKJ~f(X)— (H,J’(x)) , (2.10)

where H is someelementof ~. The conformal action generatedby Ljj (x) operateson the KM

phasespaceas

ôf,HJ(X) =_fdylf(y+){LH(y), J(x)}

=f(x~)J’(x)+f’(x~)(J(x)+ [H,J(x)])+f”(x~)H, (2.11)

for any parameterfunction f (x+), correspondingto the conformal coordinate transformation
ôj x+ = —f (x+)~In particular, j (x) in (2.2) transforms under this new conformal action
accordingto

ôf,HJ(X) =f(x~)J’(x) +f”(x~)H+f’(x~)(i(x) + [H,J(x)] + ([H,M] +M)) ,(2.12)

andour condition is that this variationshould be in F-’-, which meansthat this conformal action
preservesthe constraintsurface.From (2.12),oneseesthat thisis equivalentto havingthefollowing
relations:

H�F’, [H,F’] cF-’-, ([H,M] +M)eF’. (2.13)

In conclusion,the existenceof an operatorH satisfyingtheserelationsis a sufficient condition
for the conformal invarianceof the KM reduction obtainedby imposing (2.3). The conditions
in (2.13) are equivalentto LH (x) being a gauge invariantquantity, inducing a corresponding
conformalactionon the reducedphasespace.Obviously,thesecondrelationin (2.13) is equivalent
to

[H,F]cF. (2.14)

An elementH e g is calleddiagonalizableif thelinear operatoradH possessesacompletesetof
eigenvectorsin g. By the eigenspacesof adH,suchan elementdefinesa gradingof~, andbelowwe
shall refer to adiagonalizableelementas agrading operator of ~. In the exampleswe study later,
conformalinvariancewill be ensuredby the existenceof agradingoperatorsubjectto (2.13).

If H is agradingoperatorsatisfying(2.13) thenit is always possibleto shift M by someelement
of F’ (i.e., without changingthephysics)so thatthe new M satisfies

[H,M] = --M , (2.15)

insteadof the last condition in (2.13). It is also clear that if H is a gradingoperatorthen one
cantakegradedbasesin F andF’, sincetheseare invariantsubspacesunderadjj. On re-inserting
(2.15) into (2.12) it thenfollows thatall componentsofj(x) areprimaryfields with respectto the
conformal actiongeneratedby LH (x), with the exceptionof theH-component,which alsosurvives
the constraintsaccordingto the first conditionin (2.13).

As an example,let us now considersomearbitrary gradingoperatorH and denoteby a,,, the
eigensubspacecorrespondingto theeigenvaluemof adH. Thenthe gradedsubalgebra~ which
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is definedto be thedirectsum ofthesubspaces~,, for all m� n, will qualify asagaugealgebraF
for anyn > 0 from thespectrumof adH.In this case = ~ andthe factorspace[F,F]~/F~,
which is thespaceof theallowedM’s, canbe representedasthedirect sumof ~ andthat graded
subspaceof ~,, which is orthogonalto [F,F]. It is easyto see that one obtainsconformally
invariant first class constraintsby choosingM to be anygraded elementfrom this factor space.
Indeed,if the gradeof M is —m then LH/m yields a Virasorodensityweakly commutingwith the
correspondingconstraints.

In summary,in this sectionwe have seenthat one can associatea first class systemof KM
constraintsto any pair (F,M) subject to (2.6) by requiring the constrainedcurrent to take the
form (2.2),andthatthe conformalinvarianceofthis systemofconstraintsis guaranteedif onecan
find an operatorH suchthat the triple (F,M,H) satisfiesthe conditionsin (2.13).

2.2. Lagrangeanrealization oftheHamiltonian reduction

We shall exhibit here a gaugedWZNW theory providing the Lagrangeanrealizationof those
Hamiltonian reductionsof the WZNW theory which can be definedby imposingfirst classcon-
straintsof the type (2.3) on the KM currentsJ and J of the theory. It should be notedthat, in
the restof this chapter,we do not assumethatthe constraintsareconformallyinvariant.

To defme theWZNW reduction,we can chooseleft and right constraintscompletelyindepen-
dently. We shall denotethe pairs consistingof an appropriatesubalgebraanda constantmatrix
correspondingto the left and right constraintsas (F, M) and (t, —ce,respectively.The reduced
theory is obtainedby first constrainingthe WZNW phasespaceby setting

= (y,, J) — (yj, M) = 0, ~j = —(5~’j,.7) — (yj, 1%~)= 0, (2,16)

wherethe y, and the 5~form basesof F and 1’, respectively,and thenfactorizing the constraint
surfaceby thecanonicaltransformationsgeneratedby theseconstraints.Onecanapplythisreduction
eitherto the usualcanonicalphasespaceor to thespaceof solutionsof theclassicalfield equation.
Theseareequivalentproceduressincethetwo spacesin questionareisomorphic.For laterpurpose
we note that the constraintsgeneratethe following chiral gaugetransformationson the spaceof
solutions:

g(x~,x)~ eC~.g(x~,x).e_~(X), (2.17)

wherey (x+) and~(x) are’arbitraryF- andf-valuedfunctions.
For completeness,we wish to mention herehowthe aboveway of reducingthe WZNW theory

fits into the generaltheoryof Hamiltonian (symplectic)symmetryreductions[34]. In general,the
Hamiltonian reduction is obtainedby settingthe phasespacefunctionsgeneratingthe symmetry
transformationsthrough the Poissonbracket (in other words, the componentsof the momentum
map)to someconstantvalues.The reducedphasespaceresultsby factorizingthis constraintsurface
by the subgroupof thesymmetrygrouprespectingtheconstraints.The symmetrygroupwe consider
is the left x right KM group generatedby F x t andour Hamiltonian reductionis special in the
sensethat the full symmetrygroup preservesthe constraints.Of course,the latter fact is just a
reformulationof thefirst-classnessof our constraints.

We now cometo themain pointofthesection,which is that thereducedWZNW theory,defined
in the aboveby usingthe Hamiltonian picture,canbe identified as the gaugeinvariantcontentof
acorrespondinggaugedWZNW theory.This gaugedWZNW interpretationof the reductionwas
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pointed out in theconcretecaseof theWZNW —~standardTodareduction in ref. [13], and we
below generalizethat constructionto thepresentsituation.

The gaugedWZNW theorywe areinterestedin is given by thefollowing action functional:

I(g,A_,A~)_Swz(g)+fd2x((A_,0÷gg_1—M)

+(A~,g’O_g—It~f)+ (A_,gA~g’)), (2.18)

wherethegaugefields A_(x) andA~(x) vary in F and f, respectively.The main propertyofthis
action is that it is invariantunderthe following non-chiralgaugetransformations:

g —÷ag~’, A_ —~aA_&~+ w9_a’, A~—~~ + (O~&)&’ , (2.l9a)

where

a = ~ , & = e~’-~~, (2.19b)

for any y(x~,x) e F and~(x~,x) E P. The proof of the invarianceof (2.18) under (2.19)
can proceedalong the samelines as for the special casein ref. [131. In the proof onerewrites
Swz(ag&’) by usingthewell-known Polyakov—Wiegmannidentity [35], and in this steponeuses
the fact that the WZNW action vanishesfor fields in the subgroupsof G with Lie algebrasF or P.
This is an obvious consequenceof therelationsF c F-’- andP c f-’-. The other crucial point is
that the termsin (2.18) containingthe constantmatricesM andM are separatelyinvariantunder
(2.19). It is easyto seethat this follows from thethird conditionin (2.6). Forexample,underan
infinitesimalgaugetransformationbelongingto a~ 1 + y, the term (A_,M) changesby

ô(A_,M) = —(O_y,M) + WM(Y,A_) , (2.20)

which is a total divergencesincethe secondterm vanishes,as both A_ andy are from F.
The Euler—Lagrangeequationderivedfrom (2.18) by varying g canbe written equivalentlyas

O_(0~gg’+ gA~g’) + [A_,ô+gg’ + gA~g’] + O~A_= 0, (2.2la)

or

8~(g’O_g+ g’A_g) — [A~,g1ô_g + g’A_g] + O_A~= 0, (2.21b)

andthe field equationsobtainedby varyingA_ andA~are givenby

(y, O~gg’+ gA~g’—M) = 0, v y�F, (2.21c)
(~,g’O_g+g’A_g—k’) = 0, v~eP, (2.21d)

respectively.We nownotethat by making useofthegaugeinvariance,A.,. andA_ canbe setequal
to zero simultaneously.The importantpoint for usis that, as is easyto see,in the A±= 0 gauge
one recoversfrom (2.21) both thefield equations(1.3) of theWZNW theoryand the constraints
(2.16). Furthermore,one seesthat settingA±to zerois not a completegaugefixing; the residual
gaugetransformationsare exactlythe chiral gaugetransformationsof eq. (2.17).

The aboveargumentstell us that thespaceofgaugeorbits in the spaceof classicalsolutionsof the
gaugedWZNW theory (2.18) canbe naturallyidentifiedwith thereducedphasespacebelongingto
theHamiltonianreductionof the WZNW theorydeterminedby the first classconstraints(2.16). It
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canbe alsoshownthatthePoissonbracketinducedon the reducedphasespaceby theHamiltonian
reductionis thesameasthe onedeterminedby thegaugedWZNW action (2.18). In summary,we
seethat the gaugedWZNW theory (2.18) providesanaturalLagrangeanimplementationof the
WZNW reduction.

2.3. Effectivefield theoriesfrom left—rightdual reductions

The aim of this section is to describethe effective field equationsand action functionalsfor
an importantclassof reducedWZNW theories.This classof theoriesis obtainedby making the
assumptionthat the left and right gaugealgebrasF and P are dual to eachother with respectto
theCartan—Killing form, which meansthat onecanchoosebasesy, e F and 5~,e F so that

(yt, 5’j) = 5, . (2.22)

This technical assumptionallows for having a simple general algorithm for disentanglingthe

constraints:

4’, = (y,, O÷gg’—M) = 0, ~, = (5,, g’9_g—A1) = 0, (2.23)

which definethe reduction. We shall commenton the physicalmeaningof the assumptionat the
endof the section; herewe only point out that it holds, e.g., if onechoosesF and P to be the
imagesof eachotherundera Cartaninvolution*) of the underlyingsimpleLie algebra.

For concreteness,let usconsiderthe maximally non-compactreal form which canbe definedas
the realspanofa ChevalleybasisH

1, E±aof thecorrespondingcomplexLie algebrag~,andin the
caseof the classicalseriesA~,B,,, C,, and D,, is given by si (n + 1, P), so(n,n + 1, IR), sp(2n,P)
andso(n,n, IR), respectively.In this casethe Cartaninvolution is (—1) x transpose,operatingon
the Chevalleybasisaccordingto

H1 —H,, E±a E~. (2.24)

It is obviousthat (v, v
t) > 0 for anynon-zerov e ~ andfrom thisoneseesthatFt is dual to F with

respectto theCartan—Killing form, i.e., (2.22) holds for P = Ft. It shouldalsobe mentionedthat
thereis a Cartaninvolution for every non-compactreal form of the complex simpleLie algebras,
as explainedin detail in ref. [36].

Equation (2.22) implies that the left andright gaugealgebrasdo not intersect,and thuswe can
considera direct sum decompositionofg of the form

g=F+13+P, (2.25a)

where B is somelinear subspaceof g. HereB is in principle an arbitrarycomplementaryspaceto
(F + t) in ~, but onecan alwaysmakethechoice

B = (F + P)-’-, (2.25b)

which is naturalin the sensethat the Cartan—Killing form is non-degenerateon this B. ChoosingB
accordingto (2.2Sb) is especiallywell suitedin the caseof the parity invarianteffective theories
discussedat the endof the section.We note that it might alsobe convenientif one cantake the

*) A Cartaninvolution aof the simple Lie algebrag is an automorphismfor which a2 = I and(v, a(v)) <0 for any

non-zeroelementv of g.
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spaceB to be a subalgebraof g, but this is not necessaryfor our argumentsand is not always
possibleeither.

We canassociatea “generalizedGaussdecomposition”of the groupG to the direct sumdecom-
position (2.25),whichis the main tool of our analysis.By “Gaussdecomposing”an elementg E G
accordingto (2.25),wemeanwriting it in the form

g=a.b~c, a=e~,b=e~,c=e~, (2.26)

where y, /1 and 5 arefrom therespectivesubspacesin (2.25).
There is a neighbourhoodof the identity in G consistingof elementswhich allow a unique

decompositionof this sort, and in this neighbourhoodthepiecesa, b and ccanbe extractedfrom
g by algebraicoperations.(Actually it is also possible to define b asa productof exponentials
correspondingto subspacesof B, and we shallmakeuseof this freedomlater, in ch. 4.) We make
the assumptionthat everyG-valuedfield we encounteris decomposableasg in (2.26). It is easily
seenthat in this “Gaussdecomposablesector” the componentsof b(x~,x) provide a complete
set of gaugeinvariant local fields, which are the local fields of the reducedtheory we are after.
Below we explain how to solve the constraints(2.23) in the Gaussdecomposablesectorof the
WZNW theory.More exactly, for our methodto work, we restrict ourselvesto consideringthose
fields which vary in such aGaussdecomposableneighbourhoodof the identity wherethe matrix

= (y1,b5~b’) (2.27)

is invertible. Due to the assumptions,the analysisgivenin the following yields a local descriptionof
the reducedtheories.It is clear thatfor a global descriptiononeshouldusepatcheson G obtained
by multiplying out theGaussdecomposableneighbourhoodoftheidentity, butwe do not dealwith
this issuehere.

Firstwederivethefield equationofthereducedtheoryby implementingtheconstraintsdirectly in
theWZNW field equation&. W~gg’) = 0. (This is allowedsincetheWZNW dynamicsleavesthe
constraintsurfaceinvariant, i.e., theWZNW Hamiltonianweakly commuteswith theconstraints.)
By inserting the Gaussdecompositionof g into (2.23) and making useof the constraintsbeing
first class, the constraintequationscanbe rewrittenas

(y,,0÷bb’ +b(8~cc’)b~—M) =0,

(5~,,b’O_b + b~(a’0_a)b—i~) = 0. (2.28)

With the help of the inverse of V,~(b) in (2.27), one can solve theseequationsfor O~cc~ and
a~0_ain termsof b,

0~cc’ = b
tT(b)b, a’O_a = b?(b)b’ , (2.29a)

where

T(b) = ~

D(b) = ~P7’(b)(5~
1, ~I—b’0_b)b’y1b. (2.29b)

It is easyto obtain theeffectivefield equationfor the field b (x~, x) by using this explicit form of
theconstraints.This canbe achieved,for example,by noting that, by applying theoperatorAda-i
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to eq. (1.9) (i.e., by conjugatingit by a~) theWZNW field equationcanbe written in theform

(2.30)

.4÷= 0÷bb’ + b(0÷cc~)b’ , A_ = —a’O_a. (2.31)

Thus, by inserting the constraints(2.29) into the aboveform of the WZNW equation,we see
that thefield equationof thereducedtheory is the zero-curvaturecondition of the following Lax
potential:

A+(b) = l3~bb’ + T(b) , .,4_(b) = —bD(b)b~. (2.32)

More explicitly, theeffectivefield equationreads

&(0÷bb’) + [bD(b)b’, T(b)] + &T(b) + b(0÷D(b))b~ = 0 . (2.33)

The expressionon the left-hand side of (2.33) in generalvaries in the full spaceQ, but not
all the componentsrepresentindependentequations.Thenumberof independentequationsis the
numberofindependentcomponentsof theWZNW field equationminusthenumberof constraints
in (2.23),sincethe constraintsautomaticallyimply thecorrespondingcomponentsof theWZNW
equation.Thus thereareexactlyasmanyindependentequationsin (2.33)asthenumberofreduced
degreesof freedom.In fact, the independent field equations can be obtainedby taking the Cartan—
Killing innerproductof (2.33) with a basisof the linear spaceB in (2.25),and theinner product
of (2.33) with the y, and the 5, vanishesas a consequenceof the constraintsin (2.23) together
with the independentfield equations.To seethis onefirst recallsthat the left-handside of (2.33)
is, upon imposingtheconstraints,equivalentto a’ (0_J)a. Thus the innerproductof thiswith F,
and similarly that of c (8÷J )c~with P. vanishesas a consequenceofthe constraints.From this,
by usingthe identity a’ (&J)a = —bc(0÷J)c’b~, one can concludethat the innerproductof
a~(IL J)a with P also vanishesas a consequenceof the constraintsand the independentfield
equations.

At this point we would like to mentioncertainspecialcaseswhentheaboveequationssimplify.
First we notethat, if onehas

[B,F] cF, [B,t]cP, (2.34)

then

T(b) = M—7rt(0+bb~) , D(b) = A~—ir1(b’0_b), (2.35)

whereweintroducedtheoperators

~ y,X~,l = > I~tX~tI, (2.36)

which project onto the spacesF and t, and assumedthat M e P and 1c1 e F. [The latter
assumptioncan be madewithout loss of generalitydue to the duality condition (2.22).] One
obtains (2.35) from (2.29) by takinginto accountthat in thiscasel’~~(b)in (2.27) is thematrix of
the operatorAdb actingon P, andthus the inverseis given by Ad,,-1. The nicestpossiblesituation
occurswhenB = (F + P)’ is a subalgebraof g andalsosatisfies(2.34). In this caseonesimply
has T = M and D = ~i?andthus (2.33) simplifies to

0_(0~blr’) + [b/dir
1, M] = 0. (2.37)
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Thederivativetermis now an elementofBandby combiningtheaboveassumptionswith the first
classconditions [M, F] c F’ and [M, F] c P-’- oneseesthat thecommutatortermin (2.37) also
variesin B, which ensuresthe consistencyof this equation.

The effectivefield equation(2.33) is in generalanon-linearequationfor the field b(x+, x),
andwe can give aprocedurewhich canin principlebe usedfor producingits generalsolution. We
aregoingto do this by makinguseof thefactthat thespaceof solutionsofthereducedtheoryis the
spaceoftheconstrainedWZNW solutionsfactorizedby the chiralgaugetransformations,according
to eq. (2.17). Thus the idea is to find the general solution of the effective field equationby
first parametrizing,in termsof arbitrarychiral functions,thoseWZNW solutionswhich satisfythe
constraints(2.23),andthenextractingthe b-partof thoseWZNW solutionsby algebraicoperations.
In otherwords,we proposeto derive thegeneralsolutionof (2.33) by looking at the origin of this
equation,insteadof its explicit form.

To be more concrete,one can start the constructionof the general solution by first Gauss
decomposingthechiral factorsof thegeneralWZNW solution g(x~,x) = g~(x+) . g~(x) as

g~,(x~)= aL(x~).bL(x~).cL(x~), gR(x) = aR(x).bR(x).cR(x). (2.38)

Then the constraint equations (2.23) become

0+cLcj’ = bj’T(b~)b~, a~’0_aR b~D(b~)b~’. (2.39)

In addition to the thepurelyalgebraicproblemsof computingthe quantitiesT and D and extracting
b from g = g~.. g~= a . b . c, these first order systems of ordinary differential equations are all
onehasto solve to producethe generalsolutionof the effective field equation.If this can be done
by quadrature then the effective field equation is also integrable by quadrature. In general, one can
proceed by trying to solve (2.39) for the functionscL (x~) and aR(x) in termsof the arbitrary
“input functions” b1., (x~) and b1~(x). Clearly, this involves only a finite numberof integrations
whenever the gauge algebras F and F consist of nilpotent elements of g. Thus in this case (2.33) is
exactly integrable, i.e., its gener~1solutioncanbe obtainedby quadrature.

We note that in concrete cases some other choice of input functions, instead of the chiral b’s,
mightprovemoreconvenientfor finding the generalsolutionsof the systemsof first orderequations
on g~.and gp. given in (2.39) (see,for instance,thederivationof thegeneralsolutionof the Liouville
equation given in ref. [12]).

It is natural to ask for the action functional underlyingthe effective field theory obtainedby
imposing the constraints (2.23) on the WZNW theory. In fact, the effective action is givenby the
following formula:

= Swz(b) — Jd2x (bD(b)b—’, T(b)). (2.40)

One can derivethe following condition for the extremumof this action:

(Jbir’,8_(8~bir’) + [bD(b)b’, T(b)J + 8_T(b) + b(8÷D(b))b~) = 0. (2.41)

It is straightforward to compute this; the only thing to remember is that the objects bDir’ and
b~Tb introduced in (2.29) vary in the gaugealgebrasF andF. The arbitraryvariation of b (x)
is determined by the arbitrary variationof fi (x) E B, according to b (x) = eP(x), and thus we see
from (2.41) that the Euler—Lagrangeequationof the action (2.40) yields exactly the independent
components of the effectivefield equation(2.33), which we obtainedpreviouslyby imposingthe
constraints directly in the WZNWfield equation.
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The effectiveaction given abovecan be derivedfrom the gaugedWZNW action I(g,A_,A.,.)
given in (2.18), by eliminatingthe gaugefields A.,. by meansof their Euler—Lagrangeequations
(2.21c,d). By using theGaussdecomposition,theseEuler—Lagrangeequationsbecomeequivalent
to the relations

a’D_a = bD(b)b~ , cD~c’ = —b’T(b)b, (2.42)

wherethe quantitiesT(b) and D(b) aregiven by theexpressionsin (2.29b)andD~denotes the
gaugecovariantderivatives,D~= 0~~ A~.Now we show that Ieff(b) in (2.40) can indeedbe
obtainedby substitutingthe solution of (2.42) for A~back into I(g,A_,A.,.) with g = abc. To
this endwe first rewrite I(abc,A_,A.,.) by using thePolyakov—Wiegmannidentity [35] as

I(abc,A_,A~)= Swz(b) — fd2x ((a’D_a, b(cD÷C’)ir’)

+ (b’8_b, cD÷c’)— (8~bb’,a’D_a) + (A_,M) + (A+,Zdf)). (2.43)

This equationcan be regardedasthe gaugecovariantform of the Polyakov—Wiegmannidentity,
andall but thelast two termsare manifestlygaugeinvariant.The effectiveaction (2.40) is derived
from (2.43) togetherwith (2.42) by noting, for example,that (8_aa~, M) is a total derivative,
which follows from thefactsthat a (x) E e~~’and M E [F, F]’, by (2.8).

Above we haveusedthe field equationsto eliminate thegaugefields from the gaugedWZNW
action (2.18) on thegrQundthat A_ and A.,. are not dynamicalfields, but “Lagrangemultiplier
fields” implementing the constraints. However, it should be noted that without furtherassumptions
the Euler—Lagrangeequationof the action resulting from (2.18) by meansof this elimination
proceduredoesnot always give theeffective field equation,which can alwaysbe obtaineddirectly
from theWZNW field equation.Onecanseethis on an examplein which oneimposesconstraints
only on one of the chiral sectorsof theWZNW theory. From this point of view, the role of our
assumptionon theduality ofthe left andright gaugealgebrasis that it guaranteesthattheeffective
action underlying the effective field equationcan be derived from I (g,A_,A.,.) in the above
manner.To endthis discussion,we note that for g = abc the non-degeneracyof V,~(b) in (2.27)
is equivalentto thenon-degeneracyof the quadraticexpression(A_, gA.,. g 1) in the components
of A_ = A~y1andA~= ~ This quadraticterm entersinto thegaugedWZNW actiongiven
by (2.18),and its non-degeneracyis clearly importantin thequantumtheory,which we consider
in ch. 5.

We mentionedat thebeginningof the sectionthat, consideringa maximallynon-compact~, one
canmakesurethat theduality assumptionexpressedby (2.22)holds by choosingF andF to be the
transposes ofeachother.Herewe point out that this particularleft—right relatedchoiceof thegauge
algebrascan alsobe usedto ensuretheparity invarianceof the effective field theory. To this end
we first noticethat, in thecaseof a maximally non-compactconnectedLie groupG, theWZNW
action S~rz(g) is invariantunderany ofthe following two “parity transformations”g —p Pg:

(Pig)(x°,x’) g’(x°,—x’) , (P2g)(x
0,x’) g1(x°,—x’). (2.44)

If onechoosesP = Ft and ii~= Mt to definetheWZNW reductionthentheparity transformation
P

1 simply interchangesthe left andright constraints,4’ and 4’ in (2.23),andthusthe corresponding
effective field theory is invariantunder the parity P1. The spaceB = (F + P)’, i.e., the choice
in (2.25b), is invariant under the transposein this case, and thus the gauge invariant field b
transformsin the sameway underP1 as g doesin (2.44). Of course,theparity invariancecanalso
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be seenon the levelofthegaugedaction I(g,A_,A~).Namely,I(g,A..,A÷)is invariantunderP1
if oneextendsthedefinition in (2.44) to includethefollowing parity transformationof thegauge
fields:

(P1A~)(x°,x’) A~(x
0,—x’) . (2.45)

The F
1-invariantreductionproceduredoesnot preservetheparity symmetryP2, but it is possible

to considerreductionspreservingjust P2 insteadof P1. In fact, suchreductionscanbe obtainedby
taking P = F and /dt = M.

Finally, it is obvious that to constructparity invariantWZNW reductionsin general,for some
arbitrarybut non-compactreal form g ofthecomplex simpleLie algebras,onecan use—o~instead
ofthetranspose,where o’ is a Cartaninvolution of g.

3. Polynomiality in KM reductionsand the W,~-a1gebras

In thepreviouschapterwe describedtheconditionsfor (2.2) definingfirst classconstraintsand
for LH (J) in (2.10) beinga gaugeinvariantquantityon this constraintsurface.It is clear that the
KM Poissonbracketsof thegaugeinvariantdifferential polynomialsofthecurrentalwayscloseon
suchpolynomialsand J-distributions.The algebraof thegaugeinvariantdifferential polynomials
is of special interest in the conformally invariant case,when it is a polynomial extensionof
the Virasoro algebra.This is particularly true if the algebra is primary, i.e., has a basiswhich
consists of a Virasorodensity and primary fields, since in that case it is a W-algebrain the
senseof Zamolodchikov[201.In section3.1 we give two conditions,a non-degeneracycondition
and a quasi-maximalitycondition, which allows one to constructout of the constrainedcurrent
a completesetof gauge invariantdifferential polynomialsby meansof a differential polynomial
gaugefixing algorithm.We call the KM reductionpolynomial if sucha polynomial gaugefixing
algorithmis available,and alsocall thecorrespondinggaugesDrinfeld—Sokolov (DS) gauges,since
our constructionis a generalizationof theonegiven in ref. [5]. The KM Poissonbracketalgebra
of the gaugeinvariantdifferential polynomialsbecomesthe Dirac bracketalgebraof the current
componentsin theDS gauges,which we considerin section3.2. We thendemonstratethat if this
algebrais primarywith respectto LH thenit is possibleto find an sl(2) subalgebraof ~ containing
H andM. Using theseresultswe showin section3.4 that theWe-algebrasoftheintroductioncanbe
derivedfrom first classconstraintsthat permitpolynomiality andthat theyaremanifestlyprimary.
Thus we canrealizethesealgebrasasKM Poissonbracketalgebrasof gaugeinvariantdifferential
polynomials,whichin principle allows for quantizingthemthroughtheKM representationtheory.
The fact that we are led to the Wg-algebrasrathernaturally (though not quite uniquely)by the
conditionsof polynomialityandprimarinessindicatesthat theseareimportantextendedconformal
algebras.Theimportanceofthe)‘Vg-algebrasis supportedby theresultof section3.5 aswell, where
we show that the W~-algebrasof ref. [26] can be interpretedas further reductionsof particular
We-algebras.This makesit possibleto exhibit primary fields for the J~-algebrasand to describe
their structure in detail in terms of the corresponding W~-a1gebras, which is the subject of ref. [37].
It is not theconcernofthis paper,but we alsomentionfor completenessthat dueto thesecondary
reductionthe JI’~-algebrasare in generalquite different from the We-algebras,sincetheyare in a
senserationalrather thanpolynomial [37].



20 L. Fehéret a!., Wess—Zumino--Novikov—Wittentheories

3.1. A sufficientconditionfor polynomiality

Let us supposethat (F,M, H) satisfy thepreviouslygiven conditions, (2.6) and (2.13), for

J(x)=M+j(x), j(x)eF’, (3.1)

describingthe constraintsurface of conformally invariant first class constraints,where H is a

gradingoperatorand M is subjectto

[H,MJ = —M, M~F-~-. (3.2)

Then, as we shall show, thefollowing two additionalconditions:

F fl/CM = {0} , where1CM = Ker(adM) , (3.3)

F’ c g>_1 , (3.4a)

allow for establishinga differentialpolynomialgaugefixing algorithm wherebyonecanconstruct
Out of J(x) in (3.1) a completeset of gaugeinvariantdifferential polynomials.We have called
condition (3.3) thenon-degeneracyconditionsinceit meansthatadM cannotannihilateanyelement
of F, and have called condition (3.4a) quasi-maximalbecauseit requiresthe dimensionof the
gaugealgebrato be almostaslarge aspermittedby thefirst classconditions*)

Beforeproving this result,we discusssomeconsequencesoftheconditions,whichwe shall need
later. In thepresentsituationF, F’ andQ aregradedby theeigenvaluesofadH[and first we note
that (3.4a) is equivalentto

c�1cF. (3.4b)

Indeed,this follows from thefact that thespacesQh and ~ aredual to eachotherwith respectto
theCartan—Killing form, which is aconsequenceof its non-degeneracyand invarianceunderadj,.
Ofcourse,hereandbelowthegradingis theonedefinedby H, andwe notethat~± 1 arenon-trivial
becauseof (3.2). The condition given by (3.4a) plays a technicalrole in our considerations,but
perhapsit canbe arguedfor alsophysically, on thebasisthatit ensuresthat theconformalweights
of the primary field componentsof j(x) in (3.1) are positive with respectto Ljj, eq. (2.10).
Second,let us observethatin oursituationM satisfying (3.2) is uniquelydetermined,that is, there
is no possibility ofshifting it by elementsfrom F’, simply becausethereare no grade—1 elements
in F~,on accountof (3.4a).The non-degeneracycondition (3.3) meansthat the operatoradM
mapsF into F’ in an infectivemanner.By combining this with (3.2), (3.4a) and (2.7) we see
that our gaugealgebraF cancontain only positivegrades:

F c g>~. (3.5)

This implies that every y E F is representedby a nilpotent operatorin any finite dimensional

representationof ~, and that
~�0 C F’ . (3.6)

It follows from (3.2) that [H, ACM] c ICM, which is telling us that /CM is alsograded,and we see

from (3.3) and (3.4b) that1CM c g<
1 . (3.7)

‘~ This will beclearlater, whenwe requireprimannessin additionto polynomiality.
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Finally, we wish to establisha certainrelationshipbetweenthe dimensionsof g and KM. For this
purposewe consideran arbitrary complementaryspaceTM to 1CM, defining a linear direct sum
decomposition

G—/CM+TM. (3.8)

It is easyto seethat for thetwo-form ~J~Mwe haveWM(ACM, ~) = 0, and therestrictionof (J)M to

TM is asymplectic form, in otherwords,
a)M(TM, TM) is non-degenerate. (3.9)

(We note in passingthat TM can be identified with the tangentspaceatM to the coadjointorbit
of G throughM, andin this pictureWM becomestheKirillov—Kostant symplecticform of theorbit
[34J.)Thenon-degeneracycondition (3.3) saysthat onecanchoosethespaceTM in (3.8) in such
a way that F c TM. Onethen obtainstheinequality

dim(F) < ~dim(TM) = ~{dim(g) —dim(/CM)] , (3.10)

where thefactor ~ arisessinceWM is a symplecticform on TM, which vanishes,by (2.6),on the
subspaceF C TM.

After theaboveclarificationof themeaningofconditions(3.3) and (3.4),we now wish to show
that they indeedallow for exhibiting a completeset of gauge invariantdifferential polynomials
amongthe gaugeinvariant functions. Generalizingthe argumentsof refs. [5,13,151,this will be
achievedby demonstratingthat an arbitrary current J(x) subjectto (3.1) can be brought to a
certain normalform by a uniquegaugetransformation,which dependson J (x) in a differential
polynomial way.

A normal form suitablefor this purposecanbe associatedto any gradedsubspace9 C ~ which
is dual to F with respectto the two-form (J3M. Given suchaspace0, it is possibleto choosebases
y~and O~in F and0, respectively,suchthat

WM (yL ~k) ôilôhk, (3.11)

wherethe subscripth on y~denotesthe grade,andthe indices i and I denotetheadditionallabels
which arenecessaryto specifythebasevectorsat fixed grade.It is to be notedthat, by defmition,
the subsriptk on elementsO~E 0 doesnot denotethegrade,which is (1 — k). The normal (or
reduced)form correspondingto 9 is given by thefollowing equation:

J~(x)=M+j~d(x), j~d(x)EF’fl0’ . (3.12)

In otherwords, thesetofreducedcurrentsis obtainedby supplementingthefirst classconstraints

of eq. (2.3) by thegaugefixing condition
Xe(x) = (J(x),O)— (M,O) = 0, VO E 9 . (3.13)

We call a gaugewhich canbe obtainedin the abovemannera Drinfeld—Sokolov (DS) gauge.It is
not hardto seethat thespaceV = F’ n 0’ is a gradedsubspaceof F’, which is disjoint from the
imageof F undertheoperatoradM and is in fact complementaryto the image,i.e., onehas

F-’- = [M,F] + V. (3.14)
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It also follows from the non-degeneracycondition (3.3) that any gradedcomplementV in (3.14)
canbe obtainedin theabovemanner,by meansof usingsome8. Thus it is possibletodefmethe
DS normal form ofthe currentdirectly in termsof acomplementaryspaceV as well, as hasbeen
donein specialcasesin refs. [5,13,18].

As thefirst stepin proving thatany currentin (3.1) is gaugeequivalentto onein theDSgauge,
let usconsiderthe gaugetransformationby gh (x~)= exp[Ei aL (x~)y~]for somefixed gradeh.
Suppressingthe summationover1, it canbe written as

j(x) —‘ j8~(x) = e~h~(1(x) + M) e~~”+ (e’~YhY C_ahVh—M. (3.15)

Takingthe innerproductof this equationwith thebasisvectorsOj~in (3.11) for all k � h, we see

thatthereis no contributionfrom thederivativeterm.We alsoseethattheonly contributionfrom
e~~j(x)e~h~= j(x) + [ah(x~) ~Yh,j(x)] + ... (3.16)

is the onecoming from thefirst term, sinceall commutatorscontainingthe elementsy~drop out
from the innerproductin questionasa consequenceof thefollowing crucial relation:

� F, fork�h, (3.17)
which follows from (3.4b) by noting that the gradeof this commutator,(1 + h — k), is at least
1 for k <h. Taking theseinto account,and computingthecontributionfrom thosetwo termsin
jg,,(x) which containM by using (3.11),we obtain

(Oj~,f~~(x)) = (O~,j(x))—a,~,(x~)ôhk,for all k ~ h. (3.18)

We seefrom this equationthat

(Oj~,j(x))= 0 ~ (O~,f5h(x))= 0, fork <h , (3.19)
aL(x~) = (O~,j(x)) =~ (O~,j~*(x))= 0, fork = h. (3.20)

Theselast two equationstell us that if the gaugefixing condition (0j,1(x)) = 0 is satisfiedfor
all k < Ii thenwe can ensurethat the sameconditionholds for j~’1~(x) for the extended range of
indicesk ~ h, by choosingah (x +) to be (Oh,j (x)). From this it is easyto seethatthe DS gauge
(3.13) can be reachedby an iterative processof gaugetransformations,and thegaugeparameters
a~(x+) are uniquepolynomialsin thecurrentat eachstageof the iteration.

In moredetail, let us write thegeneralelementg(a(x~))� e1’ ofthegaugegroupasa product
in orderof descendinggrades,i.e., as

g(a(x~))= g~, fh~_
1 ~ with gh~(x~)= e’~i ~)Th1 , (3.2la)

where

h~> h~_1> ... > h1 (3.21b)

is the list ofgradesoccurringin F. Let ustheninsert this expressioninto

1 —~ = g(j + M)g’ + g’g~ — M, (3.22a)
*) Throughoutthe chapter,all equationsinvolving gaugetransformations,Poissonbrackets,etc.,areto beevaluatedby

using afixed time, sincethey areall consequencesof eq. (2.1). By this convention,they arevalid both on the canonical
phasespaceandon the chiral KM phasespacebelongingto thespaceof solutionsof thetheory.
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andconsiderthe condition

j~(x) = fred(X) , (3.22b)

with fred (x) in (3.12), asan equationfor thegaugeparametersah (x+). Oneseesfrom theabove
considerationsthat this equation is uniquely soluble for the componentsof the ah (x+) and the
solution is a differential polynomial in 1(x). This implies that the componentsof f~j (x) can
also be uniquely computedfrom (3.22), and the solutionyieldsa completeset ofgaugeinvariant
differential polynomials off (x), which establishestherequiredresult.The aboveiterativeprocedure
is in fact aconvenienttool for computingthe gaugeinvariant differentialpolynomialsin practice
[15]. We remarkthat, of course,any uniquegaugefixing canbe usedto define gaugeinvariant
quantities,but theyarein generalnot polynomial,not evenlocal in j(x).

We alsowish to note that an arbitrary linear subspaceof ~ which is dual to V in (3.14) with
respectto the Cartan—Killing form can be usedin a natural way as the spaceof parametersfor
describingthosecurrentdependentKM transformationswhich preservethe DS gauge.In fact, it is
possibleto give an algorithmwhich computesthe W-algebraand its action on the other fields of
thecorrespondingconstrainedWZNW theory by finding the gaugepreservingKM transformations
implementing the W-transformations.This algorithm presupposesthe existenceof such gauge
invariantdifferentialpolynomialswhich reduceto the currentcomponentsin the DS gauge,which
is ensuredby the abovegaugefixing algorithm,but it workswithout actuallycomputingthem.This
issue is treatedin detail in refs. [13,181in specialcases,but the resultsgiven thereapply also to
the generalsituationinvestigatedin the above.

3.2. The polynomiality of the Dirac bracket

It follows from the polynomiality of the gaugefixing that the componentsof the gaugefixed
current fred in (3.12) generatea differential polynomial algebraunder the Dirac bracket. In our
proofof the polynomiality we actuallyonly usedthat the gradedsubspace9 of ~ is dual to the
gradedgaugealgebraF with respectto WM andsatisfiesthe condition

([ø,F])>1 cF , (3.23)

which is equivalentto the existenceof the basesvL and Oj~satisfying (3.11) and (3.17).We have
seenthat this condition follows from (3.3) and (3.4), but it should be noted that it is a more
generalcondition, since the converseis not true, as is shownby an exampleat the end of this
section.

Below we wish to give a direct prooffor thepolynomiality oftheDirac bracketalgebrabelonging
to thesecondclass constraints:

cr(x) = (r,J(x)—M) =0, r�{y~}u{OL} . (3.24)
The proof will shedanew light on thepolynomialitycondition. We notethat for certainpurposes
secondclassconstraintsmight be morenaturalto usethanfirst classonessincein thesecondclass
formalism onedirectly dealswith the physical fields. For example,the Wg-algebramentionedin
the introductionis very naturalfrom the secondclasspoint of view andcanbe realizedby starting
with a numberofdifferent first classsystemsof constraints,aswe shall seein section3.4.

We first recall that, by definition, theDirac bracketalgebraof the reducedcurrentsis
(~U ( \ ~) ~‘ \‘L* 1~u I ~ ~V ~‘

lJred~X~,Jred~YjJ — l]red~XJ,Jred~Y

~ (3.25)
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where, for any u � ~1,j~d(x) = (U,fred(X)) is to be replacedby (u,J(x) — M) under the KM
Poissonbracket,and4,~(z,w) is the inverseof the kernel

D,~(z,w)= {c,~(z),c~(w)}, (3.26)

in the sensethat (on theconstraintsurface)

~JdX’4w(Z~X)Dz..~r(X~W) =ö~ö(z’—w’). (3.27)

To establishthepolynomiality oftheDiracbracket,it is usefulto considerthe matrix differential
operatorD,~,(z) definedby thekernelD~(z,w) in theusualway, i.e.,

~D,~~(z)f~(z) = ~fdw’D,~~(z,w)f~(w), (3.28)

for avectorofsmoothfunctionsf,, (z)whichareperiodicin z1.Fromthestructureoftheconstraints
in (3.24),c~= (çb~,,Xe), oneseesthat D,~(z) is a first orderdifferential operatorpossessingthe
following block structure:

D — (D~ D
79 “i — ( 0 E ‘~ (3 29

— ~ D~9)— ~—E~ F)’

where E~is the formal Hermitian conjugateof the matrix E, (E~) o~= (E~9)t. It is clear that
the Dirac bracketin (3.25) is a differential polynomial in fred (x) and 5 (x’ — y

1) wheneverthe
inverse operator D~(z), whosekernel is A,~, (z,w), is a differential operatorwhosecoefficients
are differential polynomialsin j~(z).On theotherhand,we seefrom (3.29) that the operatorD
is invertible if andonly if its block E is invertible, andin that casethe inversetakesthe form

= ((EtY’FE_1 (~)~). (3.30)

Since£ (z) andF (z) are polynomial (evenlinear) in j~ (z) and in O~andthe inverseof F (z)
doesnot occurin D’ (z), it follows thatD’ (z) is apolynomialdifferential operatorif and only
if E’ (z) is apolynomialdifferential operator.

To showthat E’ existsandis a polynomial differential operatorwe notethat in termsof the
basisof (F + 0) in (3.24) the matrix E is given explicitly by thefollowing formula:

Eyzi,e~(z) ô~Smn+ ([Y~,Ofl,fred(Z)) + (y~,O~)9~. (3.31)

Thecrucialpointis that, by thegradingand the propertyin (3.17),we have

Eyhm,gkn(z)= 5hk5nm , forkS h . (3.32)

The matrix E hasa block structurelabelledby the (block) row and (block) column indices h
and k, respectively,and (3.32) meansthat the blocks in thediagonal of E are unit matricesand
the blocks below the diagonal vanish. In otherwords, E is of the form E = 1 + e, wheree is a
strictly upper triangularmatrix. It is clearthat sucha matrix differential operatoris polynomially
invertible, namely by a finite series of theform

E1 = l—e+e2-j-•~.+~ (
6N+1 =0), (3.33)
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which finishesour proof of the polynomiality of the Dirac bracketin (3.25). One can use the
argumentsin theaboveproofto setup an algorithmfor actuallycomputingtheDirac bracket.The
proof also shows that thepolynomiality of theDirac bracketis guaranteedwheneverE is of the
form (1 + e) with e beingnilpotentas a matrix. In our casethis was ensuredby a specialgrading
assumption,andit appearsan interestingquestionwhetherpolynomial reductionscanbe obtained
at all without using somegradingstructure.

The zeroblock occursin D’ in (3.30) becausethe secondclassconstraintsoriginate from the
gaugefixing of first class ones. Wenotethatthepresenceof this zeroblock implies that theDirac
bracketsof the gauge invariant quantitiescoincide with their original Poissonbrackets,namely
one seesthis from the formula of the Dirac bracketby keepingin mind that the gaugeinvariant
quantitiesweakly commutewith thefirst classconstraints.

Finally, we want to show that thepolynomiality condition (3.23) is weakerthan (3.3), (3.4).
More exactly, thenon-degeneracycondition (3.3) is requiredby thevery notion of the 0 space,
eq. (3.11), but (3.23) can hold without having the quasi-maximalitycondition (3.4). This is
best seenby consideringan example.To this end let now ~ be the maximally non-compactreal
form of a complex simple Lie algebra.If {M_, M0, M÷)is the principal si (2) embeddingin Q,
with commutationrules as in (3.36) below, we simply choosethe one-dimensionalgaugealgebra
F {M+ } and take M M.. The coM-dual to M÷can be taken to be 0 = M0, and then
(3.23) holds. To showthat conditions(3.4b) cannotbe satisfied,we prove thata gradingoperator
H for which [H, M.] = —M_ and~~

1
1C F, does not exist. First of all, [H, M I = —M_ and

(M_, M÷)~ 0 imply [H, M~I = M~,andthusF>’~ = {M~}. Furthermore,writing H = (Mo + 4),
wefind from [H, M~]= ±M~that 4 mustbe aiisl(2) singlet in theadjoint of g. However,in the
caseof theprincipal sl (2) embedding,thereis no suchsingletin theadjoint, andhenceH = M0.
But thentheconditiong~C F is not fulfilled.

3.3. An sI(2) subalgebraofg from a primaryfield basis

The conditionsgiven in section 3.1 guaranteethat the gauge invariant functionsallow for a
basisconsistingof n = dim (F’) — dim (F) independentgaugeinvariantdifferential polynomials.
The Poissonbracketalgebraof the gaugeinvariantdifferentialpolynomials containsthe Virasoro
algebrageneratedby LH. Thisextendedconformal algebrawill qualify as aW-algebrain the sense
ofZamolodchikov[20] if it hasaprimaryfield basis. By a primaryfield basis(with respectto the
conformal structuredefinedby LH) we meanageneratingset W

1 (i = 1, . .. , n) suchthat

W’ = LH, W’ primaryfield for i = 2, . . . , n. (3.34)

The existenceof a primary field basis is not automatic.The intuitive reasonfor this is that the
H-componentof theconstrainedcurrentj(x) in (3.1) is not a primaryfield with respectto the
conformalactiongeneratedby LH:

5f,HI = f f’ + f’(j + [H,jI) + f”H. (3.35)

Thepurposeof this sectionis to prove thefollowing theorem,which showsthe importanceof the
sl (2) subalgebrasof the simple Lie algebrasfor describingthe structureof the polynomial and
primaryKM reductions.

Theorem. Considerconformallyinvariant first classconstraintsgivenby the triple (F,M, H), where
H is a gradingoperatorand [H, MI = —M. Supposethat the reductionis polynomialin the sense
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that the polynomial DSgauge fixing is available. [This is guaranteed ~fconditions (3.3), (3.4) or
(3.23) are satisfied.] Suppose furthermore that the reduced algebra has a primary field basis with
respectto LH. Thenthereexistsan elementM.1. � F such that { M_ M, M0 H, M~} is an sl(2)
subalgebraof Q, i.e., onehas

[M0,M~] = ±M~, [M~,M_] = 2M0 . (3.36)

Weherepresentan indirect proofof the theorem.We startby assumingthat the requiredsl(2)
generatorM~doesnot exist, in spite of the assumedexistenceof the primaryfield basis (3.34).
The non-existenceof M+ implies that

H~[M,F] . (3.37)

Indeed,sinceF is gradedby H, if therewas someelement~ciE 1’ for which H = EM, A~f],then
we could takeM+ to be thegradeI componentof —2M. On accountof (3.37), we can choosea
gradedlinear subspaceV of F’ which is disjoint from [M, F] and satisfiesF’ = [M,F] + V in
such away that

HEy. (3.38)

As in section3.1, eqs. (3.12)—(3.14),we canassociatea DS gaugeto thecomplementaryspaceV,

by requiring the gaugefixed current to lie on the gaugesectionC definedas follows:
C_—{Jj J(x) =M4-jv(x) , jp(x)EV}. (3.39)

It will alsobe useful to considerthesetof“restrictedconfigurations”Co given by

Co={JIJ(x)=M+h(x)H, \/h(x)ER}. (3.40)

As for anyDS gauge,we canfind uniquegaugeinvariantdifferential polynomialson theconstraint
surface(3.1),which reduceto thecomponentsof lv by restrictionto C. Combiningthis with the
fact thatwe haveC0 c C, we obtain that, if the W form a basisof the gaugeinvariantdifferential
polynomials,thenthereexists adifferentialpolynomialP = P(W’, W

2,...,W~)suchthat

P(W’,W2,...,W’~)~c
0= h . (3.41)

Let usnow considerheretheprimaryfield basis,whichis assumedto exist. For thisbasiswe have

W
tfco = (~h2—h’)(H,H)~w(h) , (3.42)

W’1c
0 = 0, for i = 2,...,n . (3.43)

Equation(3.42) is the result of a straight substitutioninto formula (2.10) of W’ = Ljq. For
eq. (3.43), we observethat Co is an invariant submanifoldunder the conformal action (3.35),
and thus the restrictionof aprimary field differential polynomial to Co becomesa primary field
differential polynomial of h. However, it is also easyto see from (3.35) that it is impossibleto
form a non-zeroprimary field differential polynomial from the field h (x) alone,which leadsto
(3.43).The last threeequationstogetherimply thath is adifferentialpolynomialof w (h). This is
clearlyacontradiction,whichcompletesthe proof of thetheorem.

The fact thatH is an sI(2) generatorimpliesby (3.35) thatthe conformalweightsof theprimary
field differentialpolynomialsarehalf-integers.It is worthstressingthatwedid not assumepreviously



L. Fehéret a!., Wess—Zumino—Novikov—Witten theories 27

that thespectrumof thegradingoperatorwas half-integral. It is remarkablethat this resultsfrom
thepurely classicalconsiderationsofpolynomiality andprimariness.The polynomialityassumption
requiredin the theoremwasthat thepolynomial DS gaugefixing is available.The non-degeneracy
condition (3.3) is necessaryfor this. We also know that adding (3.4), or the weaker (3.23), to
the non-degeneracyconditionis sufficientfor polynomiality. On theotherhand,theexistenceof a
primaryfield basisis a strongrequirementwhich canbe usedto deducefurther restrictionson the
allowedtriple (F, M,H) describingtheconformally invariantreduction.The exactcontentof the
“DS gaugeassumption”andthe “primarinessassumption”requiresfurtherstudy, which we hope
to presentin a futurepublication.

3.4. First class constraints for the We-algebras

In theprevioussectionwe haveshownthatit is possibleto associatean sl (2) subalgebraofg to
any polynomial and primaryKM reduction.Herewe shall proceedin theoppositedirection, and
investigatethosevery naturalW-algebraswhichare manifestlybasedon thesl (2) embeddings.Let
S = {M_, M0, M÷}be an sl(2)subalgebraofthe simpleLie algebrag:

[M0,M~] = , [M÷,M_] = 2M0. (3.44)

It was alreadypointedout in the introductionthat onecandefinean extendedconformalalgebra,
denotedaswg, by usingany suchsi(2) embedding[16,18].Namely,we definedtheWg-algebra
to be theDirac bracketalgebrageneratedby the componentsoftheconstrainedKM currentof the
following specialform:

Jre~i(X) = M_ +fred(x) ‘ fred(X) EKer(adM÷), (3.45)

which meansthat fred (x) is a linear combinationofthesl (2) highestweightstatesin theadjointof
g. Thisdefinition is indeednatural in thesensethattheconformalpropertiesaremanifest,since,as
we shallseebelow,with theexceptionoftheM+ -componentthespin s-componentof fred (x) turns
out to be a primary field of conformalweight (S + 1) with respectto LM0. Before showingthis,
we shall presentherefirst class KM constraintsunderlyingtheWe-algebra,which will be usedin
cli. 4 to constructgeneralizedTodatheorieswhich realizetheWe-algebrasastheir chiral algebras.
We expect the Wg-algebrasto play an importantorganizingrole in describingthe (primary field
contentof) conformally invariant KM reductionsin general.The theoremof the previoussection
clearlysupportsit, but we shall alsogive furtherargumentsin favour ofthis idealater.

We wish to find a gaugealgebraF for which the triple (F,H = M0,M = M_) satisfiesour
sufficient conditionsfor polynomialityand (3.45) representsa DS gauge for the corresponding
conformallyinvariant first classconstraints.We start by noticing that the dimensionof such a F
hasto satisfythe relation

dim Ker(adM+) = dimW~= dim0—2dimF. (3.46)

Fromthis, sincethekernelsof adM~are of equaldimension,we obtainthat

dimF = ~ dime — ~ dimKer(adM_) , (3.47)

which meansby (3.10) thatwe are looking for aF of maximaldimension.By the representation

theoryof sI(2), the aboveequalityis equivalentto
dimF = dim~>.1+ ~dimQi~, (3.48)
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where the grading is by the, in general half-integral, eigenvaluesof adM0. We also know from
formulas(3.4b) and (3.5) thatfor ourpurposewe haveto choosethegradedLie subalgebraF of 0
in suchaway thatQ�i C F c 0>0. Observethat thenon-degeneracycondition (3.3) is automatically
satisfiedfor anysuch F since in the present case Ker(adM_) C 0<o, andM0 E F-

t- is alsoensured,
which guaranteesthe conformalinvariance,see (2.13).

It is obvious from the abovethat in the specialcaseof an integral sl (2) subalgebra,for which
01/2 is empty, onecansimply take

F = 0>1 . (3.49)

For gradingreasons,

WM(O�1,0�1) = 0 (3.50)

holds,and thusoneindeedobtainsfirst classconstraintsin this way.
Oneseesfrom (3.48) that for finding thegaugealgebrain thenon-trivial caseof a haijintegral

si (2) subalgebra,one should somehowadd half of 01/2 to 0>i, in order to have the correct
dimension.The key observationfor definingtherequiredhalving of 01/2 consistsin noticing that
therestrictionof thetwo-form COM_ to 01/2 is non-degenerate.This canbe seenas aconsequence
of (3.9),but is also easyto verify directly. By thewell knownDarbouxnormalform of symplectic
forms [34], thereexistsa (non-unique)direct sum decomposition

01/2 = 21/2 + Ql/2 (3.51)

suchthat WM_ vanisheson thesubspacesP1I~and QI/2 separately. The spaces 21/2 andQI/2, which
aretheanaloguesof theusualmomentumandcoordinatesubspacesofthephasespacein analytical
mechanics,areof equaldimensionanddual to eachotherwith respectto COM_. The point is that
the first-classnessconditionsin (2.6) aresatisfiedif we define thegaugealgebrato be

F = 0>i + 21/2 (3.52)

by using any symplectic halving oftheabovekind. It is obviousfrom the constructionthat the first
classconstraints

J(x) = M + 1(x), f(x) �F’ , (3.53)

obtainedby using F in (3.5~2)satisfy the sufficient conditionsfor polynomialitygiven in section
3.1. With this F wehave

F’ 0>o + Ql/2, (3.54a)

where Q—l/2 is the subspaceof 0—1/2 given by

Q—I/2 = [M_,2
112] . (3.54b)

By combining (3.52) and (3.54) onealsoeasilyverifies thefollowing direct sum decomposition:

F’ = [M_,F] + Ker(adM4) , (3.55)

which is just (3.14) with V = Ker(adM+). This meansthat (3.45) is indeed nothing but the
equationof aparticularDS gaugefor thefirst classconstraintsin (3.53), as required.Thisspecial
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DS gauge is called the highest weight gauge [13]. Similarly as for any DS gauge, there exists
thereforea basisof gaugeinvariantdifferential polynomialsof the currentin (3.53) suchthat the
baseelementsreduceto thecomponentsof fred (x) in (3.45) by thegaugefixing. TheKM Poisson
bracketalgebraof thesegaugeinvariantdifferential polynomials is clearly identical to the Dirac
bracketalgebraof thecorrespondingcurrentcomponents,and we canthus realizetheWe-algebra
asa KM Poissonbracketalgebraof gaugeinvariantdifferential polynomials.

The secondclass constraintsdefining the highestweight gauge (3.45) are natural in the sense
that in this caser in (3.24) runs over thebasisof the spaceTM_ = [M~, 0], which is a natural
complementof KM_ = Ker(adM_) in 0, eq. (3.8).

In thesecondclassformalism,theconformalaction generatedby LM0 on theWg-algebrais given
by the following formula:

5,Mofred(x)_fdYlf(Y+){LM0(Y),fred(x)}*, (3.56)

wherethe parameterfunction f (x +) refers to the conformal coordinatetransformationS~x + =

—f(x~), cf. (2.11), and j~(x) is to be substitutedby J(x) — M_ when evaluatingthe KM
Poissonbracketsentering into (3.56), like in (3.25). To actuallyevaluate(3.56), we first replace
LM0 by theobject

Lmc,,j(X) = LM0(x) — ~ J”(x)) , (3.57)

which is allowed under the Dirac bracketsince the difference (the secondterm) vanishesupon
imposingtheconstraints.The crucial point to notice is that Lmedj weakly commuteswith all the
constraintsdefining (3.45) (not only with the first classones)underthe KM Poissonbracket.This
implies that with Lm~the Dirac bracketin (3.56) is in fact identical to the original KM Poisson
bracketandby this observationwe easilyobtain

~ (3.58)

Thisprovesthat, with theexceptionof theM~-component,thesl(2) highestweightcomponentsof
fred!(x) in (3.45) transformas conformalprimaryfields, wherebythe conformal contentof W,~is
determinedby the decompositionof the adjointof 0 underS in theaforementionedmanner.We
endthis discussionby notingthat in the highestweightgaugeLM0(x) becomesalinear combination
of theM~-componentof fred(x) and aquadraticexpressionin the componentscorrespondingto
the singletsof S in ~. From this we seethat LM0 (x) andtheprimary fields correspondingto the
sl(2) highestweight statesgive a basisfor the differential polynomialscontainedin W~,which is
thus indeeda (classical)W-algebrain the senseof thegeneralidea in ref. [20].

In theabovewe proposeda “halving procedure”for findingpurelyfirst classconstraintsfor which
W~appearsas the algebraof the correspondinggaugeinvariant differentialpolynomials.We now
wish to clarify therelationshipbetweenour methodand the constructionin arecentpaperby Bais
et al. [16], wherethe W,~-algebrahasbeendescribed,in the specialcaseof 0 = sl(n), by usinga
different method.We recall that theWe-algebrahasbeenconstructedin ref. [16] by addingto the
first classconstraintsdefinedby the pair (0>1,M_) the second class constraints

(u, J(x)) = 0, for V u � 01/2 . (3.59)

Clearly, we recover theseconstraintsby first imposingour completeset of first class constraint
belongingto (F,M_) with F in (3.52),andthenpartiallyfixing thegaugeby imposingthe condition

(u, J(x)) = 0, for Vu � Q1/2 . (3.60)
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Oneof the advantagesof our constructionis that by using only first class KM constraintsit is
easyto constructgeneralizedTodatheorieswhich possesswg as their chiral algebra,for any sl(2)
subalgebra,namely by using our generalmethod of WZNW reductions.This will be elaborated
in the next chapter.We note that in ref. [16] theauthorswere actually also led to replacingthe
original constraintsby a first classsystemof constraints,in order‘to be ableto considerthe BRST
quantizationof thetheory.For this purposethey introducedunphysical“auxiliary fields” and thus
constructedfirst classconstraintsin an extendedphasespace.However,in thatconstructiononehas
to checkthat theauxiliary fields fmally disappearfrom thephysicalquantities.Anotherimportant
advantageofour halving procedure is that it renderstheuseofanysuchauxiliary fieldscompletely
unnecessary,sinceonecanstartby imposingacompletesystemoffirst classconstraintson theKM
phasespacefrom the very beginning.We study someaspectsof the BRST quantizationin ch. 5,
andwe shall seethat theVirasorocentralchargegiven in ref. [16] agreeswith theonecomputed
by taking our first classconstraintsas the startingpoint.

The first class constraintsleading to W~are not unique; for example, onecan consideran
arbitrary halving in (3.51) to defineF. We conjecturethat theseW-algebrasalwaysoccurunder
certainnaturalassumptionson the constraints.To be more exact, let us suppose that we have
conformallyinvariantfirst classconstraintsdeterminedby thepair (F,M_), whereM_ isanilpotent
matrix and the non-degeneracycondition (3.3) holds togetherwith eq. (3.47). By theJacobson—
Morozov theorem, it is possible to extendthe nilpotent generatorM_ to an sl(2) subalgebra
S = {M_, M0, M~}. It is also worth noting that the conjugacyclassof S under theautomorphism
groupofg is uniquelydeterminedby theconjugacyclassof thenilpotentelementM_. Forthis and
otherquestions concerning the theory of si (2) embeddings into semi-simpleLie algebrasthe reader
mayconsult refs. [32,33,38,39].We expectthat theaboveassumptionson (F, M_) are sufficient
for theexistenceof a complete setof gauge invariant differential polynomials and their algebra is
isomorphicto W~,where M_ � S. We are not yet able to prove this conjecturein general, but
belowwe wish to sketchthe proofin an importantspecialcasewhich illustratesthe idea.

Let usassumethatwe haveconformallyinvariantfirst classconstraintsdescribedby (F, M_,H)
subjectto thesufficient conditionsfor polynomialitygivenin section3.1, suchthatH is an integral
grading operatorof 0. We note that theseare exactlythe assumptionssatisfiedby the constraints
in the non-degeneratecaseof the generalizedToda theoriesassociatedto integral gradings [181.
In this case eq. (3.47) is actually automaticallysatisfiedas aconsequenceof the non-degeneracy
condition (3.3). Onecan also showthat it is possibleto find an sl(2) algebraS = {M_, M0,M~}
for which in addition to [H, M_] = —M.. onehas

[H,M0] = 0, [H,M~] = M~, (3.61)

andthat for this sl(2) algebratherelation

Ker(adM~)C g~0 (3.62)

holds, where the superscriptindicatesthat the grading is definedby H. For the sl(2) subjectto
(3.61)thelatterproperty is in fact equivalentto Ker(adM_) C ~ which is just thenon-degeneracy
conditionasin our caseF = ~ The proof of these statements is given in appendix B.

We introducea definition at this point, which will be used in therestof the paper. Namely, we
call an sl(2) subalgebraS = {M_, M0, M~} an H-compatiblesi (2) from now on if thereexists an
integralgradingoperatorH such that [H, M~I = ±M~is satisfiedtogetherwith the non-degeneracy
condition. The non-degeneracy conditioncan be expressedin various equivalentforms; it canbe
given, for example,as the relationin (3.62), andits (equivalent)analoguefor M_.



L. Fehéret a!., Wess—Zumino--Novikov--Witten theories 31

Turningbackto the problemat hand, we now point out that by usingthe H-compatiblesl(2) we
havethe following direct sumdecompositionof ~ =

= [M_,0>~] +Ker(adM+). (3.63)

This meansthat the setof currentsof the form (3.45) representsa DS gaugefor the presentfirst
classconstraints.This implies the requiredresult, thatis, the W-algebrabelongingto the constraints
definedby F = g~togetherwith a non-degenerateM_ is isomorphicto W,~with M_ � S. In
this exampleboth LH (x) and LM0 (x) aregaugeinvariantdifferential polynomials.Although the
spectrumof adj, is integralby assumption,in somecasesthe H-compatiblesi (2) is embeddedinto
g in ahalf-integralmanner,i.e., thespectrumof adM0 canbe half-integralin certaincases.We shall
return to this point later. We furthernote that in generalit is clearly impossibleto build suchan
si (2) out of M_ for which H would play the role of M0. It follows from the theoremproved in
the previoussectionthat in those casesthereis no full set of primary fields with respectto LH
which would completethis Virasoro densityto a generatingset of the correspondingdifferential
polynomialW-algebra.We haveseenthat suchaconformalbasisis manifestfor W~,which seemsto
indicatethat in thepresentsituationthe conformalstructuredefinedby thesl (2), LM0, is preferred
in comparisonto the onedefinedby Ljj.

We also would like to mention an interestinggeneralfact aboutthe Wg-algebras,which will be
usedin the next section.Let us considerthe decompositionof 0 underthe sl (2) subalgebraS. In
general,we shall find singletstatesand theyspanaLie subalgebrain the Lie subalgebraKer(adM~)
of g. Let us denotethis zero-spinsubalgebraas Z. It is easyto see that we havethe semi-direct
sumdecomposition

Ker(adM+) = Z + R, [Z,1~] C R., [Z,Z] c Z, (3.64)

where 1~is the linear space spannedby the restof the highestweight states,which havenon-zero
spin. It is not hard to prove that the subalgebra of the original KM algebra which belongs to Z,
survivesthe reductionto wg. In other words,theDiracbracketsofthe Z-componentsofthehighest
weight gauge current, j~ in (3.45), coincide with their original KM Poissonbrackets,given by
(2.1). Furthermore, this Z KM subalgebra acts on the Wg-algebra by the corresponding original
KM transformations,which preservethehighestweightgauge:

J~d(x)—+ ea’~C~Jre~i(x)~ + (ea’~C~)fc_a’ ~)C, (3.65)

wherethe~ form a basisof Z. In particular,oneseesthat the Wg-algebrainheritsthesemi-direct
sum structuregiven by (3.64) [16]. The point we wish to makeis that it is possible to further
reducethe We-algebraby applying thegeneralmethodof conformallyinvariantKM reductionsto
the present Z KM symmetry. In principle, one can generate a huge number of new conformally
invariant systems out of the We-algebras in this way, i.e., by applying conformally invariant
constraintsto their singlet KM subalgebras.For example, if one can find a subalgebraof Z on
which the Cartan—Killing form of g vanishes,then one can considerthe obviously conformally
invariant reductionobtainedby constrainingthe correspondingcomponentsof ~ in (3.45) to
zero. Wedo not explore these “secondary” reductions of the Wg-algebrasin this paper.However,
their potentialimportancewill be highlightedby the example of the next section.

Finally, we note that, for a half-integral sl (2), one can consider [instead of using F in (3.52)]
also those conformallyinvariantfirst classconstraintswhich are definedby the triple (F,M0,M_)
with any graded F for which 0>1 c F c (0>1 + 21/2). The polynomiality conditions of section
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3.1 are clearlysatisfiedwith any such“quasi-maximalbut not maximal”F, and thecorresponding
extendedconformalalgebrasare in a sensebetweenthe KM and We-algebras.However, it does
not automaticallyfollow that thesealgebrashayea primaryfield basis,althoughwe verified this in
someexamples.

3.5. TheW~interpretationof the W,~-algebras

The W~-algebrasare certainconformallyinvariant reductionsof the sl (n,R) KM algebraintro-
ducedby Bershadsky[261using a mixed setoffirst class andsecondclassconstraints.It is known
[16] that the simplestnon-trivial caseW3

2, originally proposedby Polyakov [27], coincideswith
the Wg-algebra belonging to the highest root sl (2) of sl (3,tR). The purposeof this sectionis to
understandwhetheror not thesereducedKM systemsfit into our framework,which is basedon
using purely first class constraints,and to uncovertheir possibleconnectionwith theW,~-algebras
in thegeneralcase.[In this section,0 = si (n, R).] In fact,we shall constructherepurely first class
KM constraintsleadingto the E4’~-algebras.The constructionwill demonstratethat theø’~-algebras
canin generalbe identifiedasfurther reductionsofparticular We-algebras.The secondaryreduction
processis obtainedby meansof the singlet KM subalgebrasof the relevantW~-aIgebras,in the
mannermentionedin theprevioussection.

By definition [261,the KM reduction yielding the l’J’~-algebrais obtainedby constrainingthe
currentto takethe following form:

JB(X) = M_ + fB(x), fB(x) � A-1-, (3.66)

whereA denotesthesetof all strictly upper triangular n x n matricesand

M_ = eI÷I,i + el÷2,2 + ... + ~ (3.67)

thee’sbeingthestandardsl(n,R) generators(Is n — 1), i.e., M_ hasl’s all alongthe /th slanted
line below the diagonal.The currentin (3.66) correspondsto imposingtheconstraints4o(x) = 0
for all 5 E 4, like in (2.3). Generally, theseconstraintscomprisefirst andsecond classparts,
where the first class part is theone belonging to the subalgebraV of A definedby the relation
COM_ (V, A) = 0 [see(2.4)]. The secondclasspartbelongsto the complementaryspace,C, of V in
4. In fact, for / = 1 theconstraintsarethe usualfirst classoneswhichyield the standardW-algebras,
but the secondclasspart is non-emptyfor 1> 1. The aboveKM reductionis soconstructedthat it
is conformallyinvariant,sincethe constraintsweakly commutewith the VirasorodensityLii, (x)
[see(2.10)], whereH

1 = (1/I )H1 andH1 is the standardgradingoperatorof si (n, IR), for which
[H1, e,k] = (k — i)e1k.

Westartourconstructionby extendingthenilpotentgeneratorM_ in (3.67)to an sl(2) subalgebra
S = {M_,Mo,M+}. In fact, parametrizingn = ml + r with m= [n/i] and 05 r < 1, we cantake

M0 = diag(m/2,..., (m — 1 )/2 ,—m/2,...), (3.68)
-~,

I times (1—r) times r times

wherethemutiplicities, r and (1—r), occuralternatelyandendwith r. The meaningof this formula
is that the fundamentalof sI (n, R) branchesinto 1 irreduciblerepresentationsunder5, r of spin
m/2 and / — r of spin (m — 1)/2. The explicit form ofM~is acertainlinear combinationof the
e1kswith (k — 1) = 1, which is straightforwardto compute.
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Next we describethefirst andthe secondclasspartsof the constraintsin (3.66) in more detail
by using thegrading definedby M0. We observefirst that in terms of this gradingthe spaceA
admitsthedecomposition

A
4o + Oi~+ Oi + 0>i. (3.69)

From this and the definition of WM, the subalgebraV comprisingthe first classpartcan alsobe

decomposedinto
V = V

0 + V1 + 0>~, (3.70)

where

V0 = Ker(adM_) fl A,~ (3.71)

is the setofthesl(2) singletsin 4, andV~is a subspaceof0~which we do not needto specify. By
combining (3.69) and (3.70), we seethat thecomplementaryspaceC, to which the secondclass
partbelongs,hasthe structure

C = Qo + 01/2 + 21 (3.72)

wherethe subspaceQo is complementaryto V~in Ao, and2~is complementaryto V1 in Oi. The
two-form ~OM_ is non-degenerateon C by construction,and this implies by the gradingthat the
spacesQ~and1’~are symplecticallyconjugateto eachother,which is reflectedby thenotation.

We shall constructa gaugealgebra,F, so that Bershadsky’sconstraintswill be recoveredby a
partial gaugefixing from the first classonesbelongingto F. As a generalizationof the halving
procedureof theprevioussection,we take thefollowing ansatz:

F = V + 21/2 + 1-’i, (3.73)

where21/2 is definedby meansofsomesymplectichalving 01/2 = 21/2 + Ql/2, like in (3.51). It is

importantto noticethatthis equationcanbe recastinto

F = V0 + 21/2 + 0�1 , (3.74)

whichwould bejust thefamiliar formula (3.52)if V0 werenot present.By using (3.67)and (3.68),

V0 canbe identified as thesetof n x n block-diagonalmatrices,a, of the following form:

a = block-diag{Zo,ao,Zo,...,Zo,ao,L’o}, (3.75)

wheretheb’s andthe a0’s areidenticalcopiesofstrictly uppertriangularr x r and (I — r) x (1— r)

matrices,respectively.This implies that

dimV0 = ~[l(l—2) + (l—2r)
2] , (3.76)

which showsthatV~is non-emptyexceptwhen1 = 2, r = 1, which is the caseof I4’~with n odd.
The fact that V

0 is in generalnon-emptygives us troubleat this stage,namely,we now haveno
guaranteethat theaboveF is actuallya subalgebraof g. By usingthegradingandthefact that V0
is asubalgebra,we seethat F in (3.74) becomesa subalgebraif andonly if

[V0,2112] C 21/2. (3.77)
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We next show that it is possibleto find such a “good halving” of 01/2 for which 21/2 satisfies
(3.77).

Forthis purpose,we useyet anothergradinghere.Thisgradingis providedby usingtheparticular
diagonalmatrix, H E 0, whichwe constructout of M0 in (3.68)by first adding~to its half-integral
eigenvalues,andthensubstractingamultiple of theunit matrix so asto maketheresulttraceless.
In theadjoint representation,we thenhaveadH = adM0 on the tensors,andadH = adM0±1/2 on
the spinors.We noticefrom this that theH-gradingis an integralgrading.In fact, therelationship
betweenthetwo gradingsallowsus to definea good halving of 01/2 asfollows:

21/2 ~c112fl0(’, Q1/2 ~0112flG~. (3.78)

SinceM_ is of grade —1 with respectto both gradings,the spacesgiven by (3.78) clearly yield a
sympectichalving of 01/2 with respectto ~

0M_. Thatthis is agoodhalving, i.e., that it ensuresthe
condition (3.77),can alsobe seeneasilyby observingthat V

0 hasgrade0 in theH-grading, too.
Thus we obtainthe requiredsubalgebraF of g by usingthis particular21/2 in (3.74).

Let us considernow the first class constraintscorrespondingto the above constructedgauge
algebraF, q~,(x) = 0 for y � F, which bring the currentinto the form

Jp(x)M_+ji(x), jr(x)�F’. (3.79)

It is easyto verify that the original constraintsurface (3.66) can be recoveredfrom (3.79) by
a partial gaugefixing in sucha way that the residualgaugetransformationsare exactly the ones
belongingto thespaceV. In fact, this is achievedby fixing thegaugefreedomcorrespondingto the
piece (21/2 + Pt) ofF, eq. (3.73),by imposingthepartialgaugefixing condition

~q~(X) = 0, q, � (Q0 + Q1/2), (3.80)

wherethe q1 form a basisof thespace(Qo + Ql/2) andthe~bqaredefinedlike in (2.3). Thisimplies
that the reducedphasespacedefinedby theconstraintsin (3.79) is thesameastheonedetermined
by the original constraints(3.66). In conclusion,our purely first classconstraints(3.79) havethe
samephysicalcontentasBershadsky’soriginal mixed setof constraints(3.66).

Finally, we givethe relationshipbetweenBershadsky’sW~-algebrasandthesl (2) systems.Having
seenthatthereducedKM phasespacescarryingthe W~-algebrascanbe realizedby startingfrom the
first classconstraintsin (3.79), it follows from (3.74) thatthe W~-algebrascoincidewith particular
Wg-algebrasif and only if the spaceV0 is empty, i.e., for W,~with n odd. In order to establish
thewg interpretationof W,~’in thegeneralcase,we point out that the reducedphasespacecan
be reachedfrom (3.79) by meansof the following two-step processbasedon the sl(2) structure.
Namely,onecanproceedby first fixing thegaugefreedomcorrespondingto the piece (21/2 + 0>i)
of F, andthenfixing the restof thegaugefreedom.Clearly, the constraintsurfaceresultingin the
first stepis thesameas theoneobtainedby putting to zerothosecomponentsofthehighestweight
gauge current representing W~which correspondto V0. The final reducedphasespaceis obtained
in thesecondstepby fixing thegaugefreedomgeneratedby theconstraintsbelongingto D0, which
we haveseento be thespaceof theupper triangularsingletsof S. Thuswe canconcludethat W~
canbe regardedasa further reductionofthecorrespondingW~,wherethe “secondaryreduction”is
ofthetypementionedat theendof section3.4. Onecanexhibit primaryfields for the Wi-algebras
and describetheir structurein detail in termsof theunderlyingWg-algebrasby furtheranalysing
the secondaryreduction,but this is outsidethe scopeof thepresentpaper;seeref. [37].
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4. GeneralizedTodatheories

Let us remindourselvesthat, as hasbeendetailedin the introduction,the standardconformal
Toda field theoriescan be naturallyregardedas reducedWZNW theories,and asa consequence
thesetheoriespossessthechiral algebrasW~x W~astheir canonicalsymmetries,whereS is the
principal si (2) subalgebraof themaximally non-compactrealLie algebra0. It is naturalto seekfor
WZNW reductionsleadingto effectivefield theorieswhich would realizeW~xW~astheir chiral
algebrasfor any sl(2) subalgebra S of any simple real Lie algebra.The mainpurposeof this chapter
is to obtain, by combiningthe resultsof sections2.3 and 3.4, generalizedToda theoriesmeeting
the aboverequirementin the non-trivial caseof the half-integral sl (2) subalgebrasof the simple
Lie algebras.Before turning to describingthesenew theories,we briefly recall the main features
of thosegeneralizedToda theories,associatedto the integral gradings of the simpleLie algebras,
which havebeenstudiedbefore [3,4,14—18].The simplicity of the latter theorieswill motivate
somesubsequentdevelopments.

4.1. GeneralizedTodatheoriesassociatedwith integralgradings

The WZNW reductionleadingto thegeneralizedTodatheoriesin questionis setup by considering
an integralgradingoperatorH of 0, and taking thespecialcase

F=g~’1, t=g~’_1, (4.1)

andanynon-zero

M�~~’1, MEOf’, (4.2)

in thegeneralconstructiongiven in section2.3. We notethat by an integralgradingoperatorH E 0
we meana diagonalizableelementwhose spectrumin the adjoint of 0 consistsof integersand
contains±1, and that ~ denotesthe grade n subspacedefinedby H. In the presentcaseB in
(2.25b) is thesubalgebra0~of 0, and,becauseofthegradingstructure,thepropertiesexpressed
by eq. (2.34) hold. Thus theeffectivefield equationreadsas(2.37) andthecorrespondingaction
is given by the simpleformula

I~(b)= Swz(b)— fd
2x(bIs~1b1,M), (4.3)

wherethefield b variesin the little groupG~of H in G.
Generalized,or non-Abelian,Toda theoriesof this typehavebeenfirst investigatedby Leznov

andSaveliev [1,3], who definedthesetheoriesby postulatingtheir Lax potential,

= O~b. b1 + M, A~= —bA~Ib’, (4.4)

which they obtainedby consideringthe problemthat if one requiresa 0-valuedpure gaugeLax
potentialto take somespecialform, thentheconsistencyofthesystemofequationscomingfrom the
zero-curvatureconditionbecomesanon-trivial problem.In comparison,we haveseenin section2.3
that in theWZNW framework theLax potentialoriginatesfrom thechiral zero-curvatureequation
(1.9),andthe consistencyandthe integrabilityof theeffectivetheoryarisingfrom the reductionis
automatic.
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It was shown in refs. [3,4,16] in the special casewhenH, M and A? are taken to be the
standardgeneratorsofan integralsl(2) subalgebraof 0, thatthenon-AbelianTodaequationallows
for conservedchiral currentsunderlyingits exactintegrability. Thesecurrentsthengeneratechiral
3’V-algebrasof thetypeW~,for integrallyembeddedsL(2)‘s.

By meansof the argumentgiven in section3.4, we can establish the structureof the chiral
algebrasof a wider classof non-AbelianTodasystems[18]. Namely,we seethat if M andM in
(4.2) satisfythenon-degeneracyconditions

Ker(adM)fl0~1= {0}, Ker(adü)flg~1= {0} , (4.5)

thenthe left x right chiral algebraof the correspondinggeneralizedToda theory is isomorphicto
wj x wg,where S_ (S.f) is an sl(2) subalgebraofg containing the nilpotentgeneratorM (A?).
TheH-compatiblesl(2) algebras8±occurringhereare not always integrally embedded ones.Thus
for certainhalf-integral sl (2) algebras3’~canbe realizedin ageneralizedTodatheoryofthetype
(4.3). As we would like to havegeneralizedToda theorieswhich possessW~as their symmetry
algebrafor an arbitrary sl(2) subalgebra,we haveto ask whetherthe theoriesgiven above are
alreadyenoughfor this purposeor not. This leadsto the technicalquestionas to whetherfor every
half-integral sl (2) subalgebraS = {M_,M0,M÷} of0 thereexists an integralgradingoperatorH
suchthat S is an H-compatiblesl (2), in the senseintroducedin section3.4. The answerto this
questionis negative,asprovenin appendixC, where therelationshipbetweenintegralgradingsand
sI (2) subalgebrasis studiedin detail. Thuswe haveto find newintegrableconformalfield theories
for our purpose.

4.2. GeneralizedTodatheoriesfor half-integral sl(2) embeddings

In the following we exhibit a generalizedToda theory possessingthe left x right chiral algebra
x 344 for an arbitrarily chosenhalf-integral sI(2) subalgebraS = {M_, M0, M.,.} of the

arbitrary but non-compact simple real Lie algebra~. Clearly, if oneimposesfirst classconstraints
ofthetypedescribedin section3.4 on thecurrentsoftheWZNW theorythentheresultingeffective
field theorywill havetherequiredchiral algebra.Weshall choosetheleft andright gaugealgebras
in suchaway that theyaredual to eachotherwith respectto theCartan—Killing form.

Turning to the details,first we choosea direct sum decompositionof 01/2 of the type in (3.51),
andthen definethe induceddecomposition0—1/2 = 2—1/2 + Q—1/2 to be given by thesubspaces

Q—1/2 ~Pj~2flG_l/2 = [M_, 21/2], P_1/2 Q1
1~

2flQ_l/2= [M_, Q1/2] . (4.6)

It is easyto seethat thetwo-form WM~vanisheson theabovesubspacesof Q_1/2 as aconsequence
of thevanishingof (

0M_ on the correspondingsubspacesof 01/2. Thus we can take the left and
right gaugealgebrasto be

F = (O>i + 21/2), ~ = W�—’ + 21/2), (4.7)

with the constantmatricesM andA? entering theconstraintsgiven by M_ and M÷,respectively.
Theduality hypothesisof section2.3 is obviouslysatisfiedby this construction.

In principle, the action andtheLax potential of the effective theory canbeobtainedby specializing
thegeneralformulasof section2.3 to thepresentparticularcase.In our case

8 Q1/2 + 00 + Q—1/2, (4.8)
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andthephysicalmodes,whichgre givenby theentriesof b in thegeneralizedGaussdecomposition
g = abc with a E eT and c E e1, arenow convenientlyparametrizedas

b(x) =exp[q
112(x)].go(x).exp[q...112(x)] , (4.9)

where q~112(x)� Q±l/2 and go(x) � G0, the little group of M0 in G. Next we introduce some
notationwhich will be usefulfor describingtheeffectivetheory.

The operatorAdg0 maps 0—1/2 to itself and, by writing the generalelementu of 0—1/2 as a
two-componentcolumn vectoru = (ui u2)t with u1 E 1’.1/2 andu2 E Q1/2, we candesignatethis
operatoras a 2 x 2 matrix:

Ad (X11(go) X12(go)’\ 410)goQ—l/2 = ‘\X21(go) X22(go))

where, for example,X11 (ge) andX12(g0) arelinear operatorsmapping21/2 and Q1/2 to 21/2,

respectively.Analogously,we introducethenotation

Ad (Y11(g0) Y12(go)’\ 411)g,~’Qt/2 = ~ y21 (g0) y22 (go))

which correspondsto writing the generalelementof 01/2 asa column vector, whose upperand
lower componentsbelongto 21/2 and Ql/2, respectively.

The action functional of the effectivefield theory resultingfrom theWZNW reductionat hand
readsas follows:

I~~(go,qi12,q_112)Swz(go)_fd2x(goM+g~1,M.)

+ fd2x((O_qi/2, g0O~q112g~’) + (‘71/2, X11
1 ~7l—I/2)), (4.12a)

where the objects‘1±1/2E 2±1/2are given by the formulae

‘71/2 = [~%f~,q_
112]+ Y12 . O...q~,,2, ‘7—1/2 = [iiil_,q112] — X12

0+Q—l/2. (4.12b)

The Euler—Lagrangeequationof this action is the zero-curvaturecondition of the following Lax

potential:
A~=M.. + t9÷g

0. g~+ go(8~q112+ Xj~
1.

= —g
0M~g~’—&q112 + Y~j

1~‘71/2. (4.13)

The abovenew (conformally invariant) effective actionandLax potentialareamongthe main
resultsof the presentpaper.Clearly, for an integrally embeddedsI(2) this actionand Lax potential
simplify to theonesgiven by eqs. (4.3) and (4.4).

The derivation of the aboveformulae is not completely straightforward,and next we wish to
sketchthe main steps.First, let us rememberthat, by (2.29a),to specializethegeneraleffective
action given by (2.40) and the Lax potentialgiven by (2.32) to our situation,we should express
theobjects8.4.cc’ anda’ 8_a in termsof b by using theconstraintson / andJ, respectively.[In
thepresentcaseit would be tediousto computethe inversematrix of V~in (2.27),which would
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be neededfor using directly (2.29b).]Forthis purposeit turnsout to be convenientto parametrize
theWZNW field g by usingthegradingdefinedby thesl(2), i.e., as

g—_g÷.g0~g_, g~ a.exp(q1/2), g_ =exp(q1/2).c. (4.14)

We recall that the fields a, c, g~and q~112havebeen introducedpreviously by meansof the
parametrizationg = abc, with b in (4.9). Also for later convenience, we write g~as

g~= exp[r~1+ P1/2 + ql/2], g_ = exp[r<1 + P—1/2 + q_l/2]. (4.15)

Note that here and below the subscriptdenotesthe gradeof the variables,andP±1/2E 7±1/2. In
our casethis parametrizationof g is advantageous,since, as shownbelow, the useof the grading
structure facilitates solving the constraints.

For example, the left constraints are restrictions on J<0, for which we have

— ~‘ N —1 —1\ 7tT—J~ 41
— ~g+go g~g~‘<o’ ~ =v~g_~g

By consideringthis equationgradeby grade,starting from the lowest grade, it is easy to see that
the constraints corresponding to 0>1 c F areequivalentto therelation

= g45’ALg0. (4.17)

The remainingleft constraintsset the P_ ~ partof J.~1/2 to zero, andto unfold theseconstraints

first we notethat
= [P1/2 + ql/2, M_] + g0 . Ni/2 . g~’, Nl/2 = 8+P_1/2 + O~qi/2. (4.18)

By usingthe notationintroducedin (4.10), thevanishingof theprojectionof J to 7—1/2 is written
as

[q112,M] + Xii~0+p_1/2 + X12 . 0~q_1/2 = 0 , (4.19)

andfrom this we obtain

8+P1/2 = xj-1
1 .{[M_, q

112] —X12.0~q1/2}. (4.20)

Combiningourpreviousformulae,finally we obtain that on theconstraintsurfaceof theWZNW

theory

N = g~M_g0+ 8~q_1/2 + X~’(go).{[M_, ql/2] —X12(go).8~q_1/2}. (4.21)

A similar analysisappliedto the right constraintsyields that they are equivalentto the following
equation:

—g
1 . &g~= —g

0M~g4~’— 8_q112 + Y~j’ (go) . {[M+, q—l/21 + Y12(g0). &ql/2}. (4.22)

Byusingtherelationsestablishedabove,we canat thisstageeasilycomputeb’ Tb = 0+cc’ and
bDb’ = a’8_a aswell, and substitutingtheseinto (2.40),and using thePolyakov—Wiegmann
identity to rewriteSwz(b) for b in (4.9), resultsin theaction in (4.12) indeed.The Lax potential
in (4.13)is obtainedfrom thegeneralexpressionin (2.32) by an additional“gaugetransformation”
by the field exp (—q112),which madethe final resultsimpler. Of course,for theaboveanalysiswe



L. Fehéret al., Wess—Zumino—Novikov—Wittentheories 39

have to restrict ourselvesto a neighbourhoodof the identity where the operatorsX11 (go) and
~‘11(go) areinvertible.

The choice of the constraintsleading to the effective theory (4.12) guaranteesthat the chiral
algebraof this theoryis the requiredone, W~x W~,and thus one should be able to expressthe
W-currentsin terms of the local fields in the action. To this first we recall that in section 3.1
we have given an algorithm for constructingthe gaugeinvariantdifferential polynomials W(/).

Thepoint we wish to makeis that the expressionof thegaugeinvariantobject W(/) in termsof
the local fields in (4.12) is simply W(8÷bb’ + T(b)), where b is given by (4.9). Applying the
reasoningof refs. [40,18] to thepresentcase,this follows sincethefunction W is form invariant
underany gaugetransformationof its argument,and the quantity (0+ b b’ + T(b)) is obtained
by a (non-chiral)gaugetransformationfrom J, namelyby thegaugetransformationdefinedby the
field a~E es’, see eqs. (2.31), (2.32). (In analogy,whenconsideringa right moving W-current
one gaugetransformstheargumentI by the field c E e

1’.) We canin principlecomputetheobject
T(b), as explainedin the above, and thus we have an algorithm for finding the formulaeof the
W’s in termsof thelocal fields go andq~

112.
The conformal symmetry of the effective theory (4.12) is determinedby the left and right

Virasoro densitiesLM0 (J) and L_M0 (J), which survive the reduction. To see this conformal
symmetry explicitly, it is useful to extract the Liouville field q5 by meansof the decomposition

= e~Mo.~, where Io containsthe generatorsfrom Oo orthogonalto M0. Onecaneasilyrewrite
the action in termsof thenewvariablesand thenits conformalsymmetrybecomesmanifestsince
e~is ofconformalweight (1, 1), ,~ is conformal scalar, and the fields q~112haveconformalweights
(~, 0) and (0, ~), respectively.This assignmentof the conformal weights can be establishedin
a numberof ways; one can, for example,derive it from the correspondingconformal symmetry
transformationof the WZNW field g in the gaugedWZNW theory, seeeq. (5.30). We also note
that the action (4.12) can be madegenerallycovariantandtherebyourgeneralizedTodatheorycan
be re-interpreted as a theoryof two-dimensionalgravity sinceq5 becomesthe gravitationalLiouville
mode [14].

We would like to pointout therelationshipbetweenthegeneralizedTodatheorygivenby (4.12)
and certainnon-linear integrableequationswhich havebeenassociatedto the half-integral sl (2)
subalgebrasof thesimpleLie algebrasby Leznovand Saveliev,by usinga different method. (See,
e.g., eq. (1.24) in the review paper in J. Soy. Math. referredto in ref. [31.)To this end we
note that, in thehalf-integralcase,onecanalso considerthe WZNW reductionthat is definedby
imposingthe left and right constraintscorrespondingto the subalgebras0>1 and 0~— of F and
f in (4.7). In fact, the Lax potential of the effective field theory correspondingto this WZNW
reductioncoincideswith theLax potentialpostulatedby LeznovandSavelievto setup their theory.
Thus, in a sense,their theory lies betweenthe WZNW theory and our generalizedToda theory,
which hasbeenobtainedby imposinga larger set of first classKM constraints.This meansthat
thetheorygiven by (4.12) canalsobe regardedasa reductionoftheir theory.

Thereis acertainfreedomin constructinga field theory possessingthe requiredchiral algebra
W~for example,onehasa freedomof choicein thehalvingprocedureusedhereto setup thegauge
algebra.The theoriesin (4.12) obtainedby usingdifferenthalvingsin eq. (3.51) havetheir chiral
algebrasin common,but it is not quite obviousif thesetheoriesare alwayscompletelyequivalent
local Lagrangeanfield theoriesor not. We have not investigatedthis “equivalenceproblem” in
general.

A special caseof this problemarisesfrom the fact that onecan expectthat in somecasesthe
theory in (4.12) is equivalentto oneof the form (4.3). This is certainly so in thosecaseswhen
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for thehalf-integralsl(2) of M0 andM~onecan find an integralgradingoperatorH suchthat (i)
[H, M~]= ±M~,(ii) 7112+0�1 = ~ (iii) 7—1/2+0�--1 = ~ (iv) Q_l/2+0o+QI/2 =

where oneusesthe Mo-gradingandthi H-gradingon theleft andon the right handsidesof these
conditions, respectively.By definition, we call the halving 01/2 = 71/2 + Q1/2 an H-compatible
halving if theseconditions are met. (We note in passing that an sl(2) which allows for an H-
compatible halving is automatically an H-compatible sl(2) in the sense defined in section 3.4, but,
asshownin appendixC, not everyH-compatiblesl(2) allows for an H-compatiblehalving.)Those
generalizedToda theoriesin (4.12) which have beenobtainedby using H-compatiblehalvings
in theWZNW reductioncan be rewritten in the simpler form (4.3) by meansof a renamingof
the variables,since in this casetherelevantfirst class constraintsare in the overlapof the ones
which havebeenconsideredfor the integralgradingsand for thehalf-integral sl (2)‘s to derivethe
respectivetheories.Sincetheform of theaction in (4.3) is much simpler thanthe onein (4.12),
it appearsimportantto know the list of thosesl(2) embeddingswhich allow for an H-compatible
halving, i.e., for which conditions (i) to (iv) canbe satisfiedwith someintegralgradingoperator
H andhalving. We study this group theoreticquestionfor thesl (2) subaigebrasof themaximally
non-compactreal forms of the classicalLie algebrasin appendixC. We showthat the existence
of an H-compatiblehalving is a very restrictiveconditionon thehalf-integral si (2) subalgebrasof
the symplecticandorthogonalLie algebras,where sucha halving exists only for the specialsl (2)
embeddingslisted at the end of appendixC. In contrast,it turns out that for 0 = si( n, R) an
H-compatiblehalvingcanbe foundfor everysl(2) subalgebra,since in this caseonecanconstruct
suchahalvingby proceedingsimilarly aswe did in section3.5 [see(3.78)].This meansthat in the
caseof 0 = si(n,R) any chiral algebraW~canbe realizedin a generalizedTodatheory associated
to an integralgrading.

It is interestingto observethat thosetheorieswhich can be alternativelywritten in both forms
(4,3) and (4.12) allow for severalconformalstructures.This is so sincein this caseat leasttwo
different Virasorodensities,namelyLH and LM0, survivethe WZNW reduction.

4.3. Two examples of generalizedTodatheories

We wish to illustrate herethegeneralconstructionof the previous sectionby working out two
examples.First we shall describeageneralizedToda theoryassociatedto thehighestroot sl(2) of
sl (n + 2, R). This is ahalf-integralsl (2) embedding,but, asweshall seeexplicitly, thetheory (4.12)
can in this casebe recastin theform (4.3), sincethe correspondinghalving is H-compatible.We
notethattheW-algebrasdefinedby thesesl (2) embeddingshavebeeninvestigatedbeforeby using
auxiliary fields in ref. [291. It is perhapsworth stressingthat our methoddoesnot requirethe
useof auxiliary fields whenreducingthç WZNW theory to the generalizedToda theorieswhich
possess these W-algebrasastheir symmetryalgebras,seealso section5.3. Accordingto the group
theoretic analysis in appendix C, the simplestcasewhena W~-a1gebradefinedby a half-integral
sl(2) embeddingcannotbe realizedin a theory of the type (4.3) is the caseof 0 = sp(4,R). As
our secondexample,we shall elaborateon thegeneralizedTodatheoryin (4.12)which realizesthe
W-algebrabelongingto the highestroot sl (2) of sp(4,Fl).

4.3.1. Highestroot sl(2) of sl(n÷2,R)
In theusualbasiswheretheCartansubalgebraconsistsof diagonalmatrices,thesl (2) subalgebra

S is generatedby theelements
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1”! ... 0\ (0... l\
Mo=~(0 O,~ 01, M+=M~=(0 O~O~. (4.23)

—lJ \~0 ... 0J

Note that here and below dots mean0’s in the entriesof the various matrices.The adjoint of
sl (n + 2) decomposesinto onetriplet, 2n doubletsandn2 singletsunderthis S. It is convenientto
parametrize the general element, g

0, of the little group of M0 as
fl...0\ ~ (n ...

g0 = e~Mo.ett~T. ( 0 jc~ 0 ~‘ T = 2 0 —21,, 0 , (4.24)

1) +hZ\0 ~.‘ nJ

T is trace orthogonalto M0 and ,~is from SL( n). We note that T and M0 generatethe centre
of the corresponding subalgebra, Oo. Weconsider the halving of 0±1/2, which is defined by the
subspaces 7±1/2 and Q±I/2consistingof matricesof the following form:

/0 P

t O\ /0 ...

P1/2 = ( 0 0,, 0 ) = 0 0,, q
0) \O ... 0)

/0 ... /0 ...

P—1/2 = j 0,, 0 J , q_
112 = ( 0 0,, 0 J , (4.25)

0J ~ ~t 0J
where q and j5 are n-dimensionalcolumn vectors andpt and ~ are n-dimensionalrow vectors,
respectively.One seesthat the P and Q subspacesof 0±1/2 are invariant under the adjoint
action of go, which meansthat the block-matricesin (4.10) and (4.11) are diagonal, and thus
‘7±1/2= [Mw, q~112].Onecan also verify that X11 = e~t

2WIo~and that using this the effective
action (4.12) canbe written asfollows:

1eff(go,q1/2,q~~~t/2)=Swz(go)

_fd2x[e~_e_~/2+W(0+~)t.i~1.(8.q) +e~2~’~ .q], (4.26)

where dot means usual matrix multiplication. With respect to the conformal structure defined by
M

0, e~has weights (1, 1), the fields q and ~ have half-integer weights (~,0) and (0, f), respectively,
w and Io areconformalscalars. In particular, we see that q

5 is the Liouville modewith respectto
this conformal structure.

In fact, thehalving consideredin (4.25) can be written like the one in (3.78), by using the
integralgradingoperatorH given explicitly as

H=Mo+~T= n+2 (n+ 1 0) (4.27)

It is an H-compatiblehalvingas onecanverify that it satisfiestheconditions (i) to (iv) mentioned
atthe endof section4.2, seealso appendixC. It follows that our reducedWZNW theory canalso
be regardedasa generalizedTodatheoryassociatedwith the integralgradingH. In other words,it
is possibleto identify theeffectiveaction (4.26) as a specialcaseof the onein (4.3). To seethis
in concreteterms,it is convenientto parametrizethe little groupof H as

/1

b = exp(ql/
2).g0.exp(q_1/2), g0 = e

011•e~• ( 0 Io 0 ) , (4.28)

1)
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where S = M0 — [(n + 2)/2n] T is traceorthogonalto H. It is easyto check that by inserting
this decompositioninto the effectiveaction (4.3) and using the Polyakov—Wiegmann identity one
recoversindeedtheeffectiveaction (4.26),with

~�p=~+(~, ~_2±n~ (4.29)

Theconformalstructuredefinedby H is different from theone definedby M0. In fact, with respect
to the former conformal structure Z’ is the Liouville modeandall otherfields, including q andc~,

areconformalscalars.
4.3.2. Highest root sl(2) ofsp(4,R)

We usetheconventionwhenthesymplecticmatriceshavethe form

g= (~~ B=B
t, C=C’, (4.30)

andtheCartansubalgebrais diagonal.The sl(2) subalgebraS correspondingto thehighestroot of
sp (4, Fl) is generated by the matrices

M
0 = ~(e1i—e33), M÷= e13, M = e31 , (4.31)

where e~denotestheelementary4 x 4 matrix containing a single 1 in the if-position. The adjoint
of sp(4) branchesinto 3 + 2 . 2 + 3. 1 under8. The threesinglets generatean sI(2) subalgebra
different from 8, so that thelittle group of M0 is GL(1) x SL(2). GL(1) is generatedby M0 itself
andthe correspondingfield is the Liouville mode.UsingusualGaussparametersfor theSL(2), we
can parametrizethe little groupof M0 as

11 0 0 0

— çbMo ( 0 e
tt’ +a/3 eW 0 aeW (4 32

g
0_ 1 0

fle~’ 0 e~

We decomposethe 0±1/2subspaces(spannedby the two doublets) into their P and Q parts as
follows:

Op 0 q\ 0000
00 q 0) ~00 0

P1/2 + ql/2 = 0 o 0 0 I’ P—1/2 + q—I/2 = ~ . (4. 3)
0 0 —p 0) t~ 0 0 0

Now the little group,or morepreciselytheSL(2) generatedby thethreesinglets,mixestheP and
Q subspacesof 0—1/2 so that the matricesX~,and ~ in (4.10) and (4.11) possessoff-diagonal
elements:

V. _4/2(e~+aflCV/ ae~\
= e fi e~’ eW )~ Lif — J~Ji.

Insertingthis into (4.12) yields thefollowing effectiveaction:

I~(g0,q,~) =Swz(go)_fd2x(e~_2e~2_~f(o_Q).(8+~)

+ 2 e~”
2(~+ e~/2~’fl0_q). (q + e_~I2Wa0+j)’\ (435)

eW+aflew )‘
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for the Liouville mode~, theconformalscalars~v,a, fi andthe fields q, tj with weights (~, 0) and
(0, ~), respectively.

It is easyto seedirectly from its formula that it is impossibleto obtain the aboveaction asa
specialcaseof (4.3). Indeed, if the expressionin (4.35) was obtainedfrom (4.3) then thenon-
derivativeterm c~q(eW+c eY’)’ could only be gotten from the secondterm in (4.3), but,
sinceg0 and b arematricesof unit determinant,this termcould neverproducethedenominatorin
thenon-derivativeterm in (4.35).

5. Quantum framework for WZNW reductions

In this chapterwe study thequantumversionoftheWZNW reductionby using thepathintegral
formalism and also re-examinesome of the classicalaspectsdiscussedin the previouschapters.
We first showthat the configurationspacepathintegralof theconstrainedWZNW theorycanbe
realizedby thegaugedWZNW theoryof section2.2. We thenpoint out that theeffectiveactionof
thereducedtheory, eq. (2.40),canbe derivedby integratingout thegaugefields in a convenient
gauge, the physical gauge, in which the gauge degreesoffreedomarefrozen.We shall find that the
passagefrom the constrainedWZNW theory to the effective reducedtheory becomestransparent
by implementingthe reductionin the pathintegral formalism. We employ Faddeev’sprescription
for thepathintegralreduction,which in principleensuresthatnot only theactionbut also thepath
integralmeasureturnsout correctlyas that of thereducedsystem.This will be confirmedexplicitly
by evaluatingthe effectivemeasurein the caseof the generalizedToda theoriesassociatedwith
integralgradings.We shall alsoexhibit theW-symmetryoftheeffectiveactionfor thisexample.By
usingthegaugedWZNW theory,wecanconstructtheBRSTformalismfor theWZNW reductionin
thegeneralcase.For conformallyinvariantreductions,this allows for computingthecorresponding
Virasorocentreexplicitly. In particular,we derive herea niceformula for the Virasorocentreof
W~for an arbitrary sl (2) embedding.We shall verify that our result agreeswith theoneobtained
in ref. [161,in spiteoftheapparentdifferencein thestructureofthe constraints.

5.1. Path integralfor constrainedWZNWtheory

In this section we wish to set up the path integral formalism for the constrained WZNWtheory.
For this, we recall that classically the reduced theoryhasbeenobtainedby imposinga setof first
class constraints in the Hamiltonianformalism. Thus what we should do is to write down the
pathintegral of theWZNW theoryfirst in phasespacewith theconstraintsimplementedandthen
find thecorrespondingconfigurationspaceexpression.The phasespace•pathintegral canformally
be definedoncethe canonicalvariablesof the theory are specified. A practical way to find the
canonicalvariables is the following [41]. Let us startfrom the WZNW actionSwz(g) in (1.2)
and parametrizethe groupelementg E G in somearbitrary way, g = g (~). We shall regardthe
parameters ~, a = 1, ..., dimG, as the canonicalcoordinatesin the theory.To find the canonical
momenta,we introducethetwo-form A = ~Aab (ce) d~acgbto rewritethe Wess—Zuminotermas

~Tr(dgg’)
3 = dA. (5.1)

The two-form A is well definedonly locally on G, sincetheWess—Zuminothree-formis closedbut

not exact.Fortunatelywe do not needto specifyA explicitly below. We nextdefine Nab(~~)by
(0g/0~)g~’= Nab(~)T1’, (5.2)
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where Tb are the generatorsof 0. The matrix N is easily shownto be non-singular,detN � 0.

Uponwriting Swz(g) = f d~xz (g), thecanonicalmomentumconjugateto ~“ is foundto be

Ha = az~/oO~a= K{Na
6(~)(oogg1)b_A~b(~)ol~J. (5.3)

The Hamiltonianof the WZNW theory is then given by H = f dx’ fl with

fl = I7aO~’~I.= ~_Tr[P2 + (icôigg~)
2], (5.4)

where

pa = (N’ )ab(JJb + KAb~a
1~). (5.5)

SinceP = icO0gg~ in theoriginal variables, the Hamiltoniandensity takes theusual Sugawara
form as expected.

Classically,theconstrainedWZNW theoryhasbeendefinedastheusualWZNW theorywith its
KMphase space reduced by the setofconstraintsgivenby (2.16),which in thecanonicalvariables
read

(y1,P+ic(51gg~—M)) =0,

= (~~,g’Pg—K(g’s91g+~)) = 0, (5.6)

with the bases y, e 1, 55, E t. As in section2.2, no relationshipis assumedherebetweenthetwo
subalgebras,1’ and t. Now wewrite downthe phasespacepathintegralfor theconstrainedWZNW
theory.Accordingto Faddeev’sprescription[421it is definedas

Z = fdHd~o(cb)o(c~)o(x)o(i)detI{~,x}Idetl{~}lexp(~fd2x (H~80~- fl))~ (5.7)

where we implementthefirst classconstraintsby insertingô(~)andö(~)in thepathintegral.The
ö-functionsof x and j refer to gauge fixing conditions corresponding to the constraints 4’ and 4’,
which actas generatorsof gaugesymmetries.By introducingLagrangemultiplier fields A. = A~y~
andA+ = A~.55j, (5.7) canbe written as

Z =Jdl7d4dA+dAo(x)o(i)detI{4’~x}IdetI{c~}I

xexP(ifd2x[Tr(H8o15+A_4’+A+cb)_n]). (5.8)

By changingthemomentumvariablefrom Ha to pa in (5.5), the measureacquiresadeterminant
factor, d17 = dPdetN, andthe integrandof the exponentin (5.8) becomes

Tr(Ha0~+A_4’ + A÷q5)—71

= K Tr[_~(!~)+ ~P(A_ + gA~g’ + 80g g’) — N
1AO

1~(Oogg’)

— ~(~1gg~)
2 + AW

1gg’ — M) —A~(g~81g+ fl)]. (5.9)
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Sincethematrix N(~)is independentofF, we caneasilyperformtheintegrationover P provided
that the remainingô-functionsandthedeterminantfactorsare alsoP-independent.We canchoose
the gaugefixing conditionsx andj so that this is true. (For example,the physicalgaugewhich we
will choosein thenextsectionfulfills this demand.)Thenwe endup with the following formulaof
theconfigurationspacepathintegral:

Z = f d~detNdA.1.dA. J(~)ô(~)det~{q5,x}~detl{qS,j}I ~ (5.10)

whereI (g,A_,A+) is the gaugedWZNW action (2.18). We notethat themeasurefor thecoordi-
natesin this pathintegral is the invariantHaarmeasure,

d~u(g)= fldz~detN= fl(dgg~)”. (5.11)

This is aconsequenceof the fact that the phasespacemeasurein (5.7) is invariantundercanonical
transformationsto which thegrouptransformationsbelong.

The aboveformulafor theconfigurationspacepathintegralmeansthatthegaugedWZNW theory
providestheLagrangianrealizationof theHamiltonianreduction,which we havealreadyseenon
the basisofa classicalargumentin section2.2.

5.2. Effective theory in the physical gauge

HavingseenhowtheconstrainedWZNW theoryis realizedasthegaugedWZNW theory,wenext
discussthe effectivetheory which ariseswhenwe eliminateall the unphysicaldegreesof freedom
in a particularly convenient gauge, the physical gauge. We shall rederive,in the path integral
formalism,the effectiveactionwhich appearedin theclassicalcontextearlier in this paper.For this
purpose,within this sectionwe restrictour attentionto theleft—right dualreductionsconsideredin
section2.3. However, it shouldbe notedthat this restriction is not absolutelynecessaryto get an
effective actionby the methodgiven below. In this respect,it is alsoworth notingthat Polyakov’s
two-dimensionalgravity action in the light cone gaugecan be regardedas an effective action in
a non-dual reduction, which is obtainedby imposing a constraintonly on the left current for
G = SL(2) [43,12]. Wewill not pursuethenon-dualcaseshere.

To eliminateall the unphysicalgaugedegreesof freedom,we simply gaugethem away from g,
i.e., we gaugefix the Gaussdecomposedg in (2.25) into the form

g=abc—~b. (5.12)

More specifically, with the parametrization a (x) = exp [o~~(x) ye], c(x) = exp [5,(x)55~]we define

the physicalgaugeby
Xi = a, = 0, j, = = 0. (5.13)

We herenotethat for this gaugethe determinantfactors in (5.8) are actuallyconstants.Now the
effective action is obtainedby performing the A~integrationsin (5.10).The integrationof A
givesrise to thedeltafunction,

flo((~~,bA÷b—’ + .9~bb’ —M)), (5.14)



46 L. Fehéret a!., Wess—Zumino—Novikov—Witten theories

with y, E F normalizedby theduality condition (2.22).One then noticesthat the deltafunction
(5.14) implies exactlycondition (2.29) with ~÷c c~ replacedby A÷. Hence,with thehelpof the
matrix V~(b) in (2.27) and T(b) in (2.29), it canbe rewrittenas

(detV)’ ~(A± — b~T(b)b). (5.15)

Finally, the integrationof A+ yields

Z = fd/Leff(b) et1~1’~, (5.16)

where‘eff (b) is theeffectiveaction (2.40) ‘~, and dIteff (b) is theeffectivemeasuregiven by

dl4eff(b) = (detVY’d~t(g)ô(a)ö(5~)= (detV)’dp(g)/dadã~~~,.o. (5.17)

Of course,asfar astheeffectiveaction is concerned,the pathintegral approachshould give the
sameresultas the classicalone,becausetheintegrationof the gaugefields is Gaussianand hence
equivalentto the classicalelimination of the gaugefields by their field equations.However, the
constructionof thepathintegralreductionalso guaranteesthat theeffectivepathintegral measure
(5.17) is exactly that of the reducedsystem.Let us see this explicitly in the simple casewhere
the space 8 = (F + f)i, with which b e e8, forms a subalgebraof 0 satisfying (2.34). (This
condition for 8 is in fact satisfiedin the caseof the generalizedToda theoriesassociatedwith
integral gradings.)In this case, the effective action in (5.16) simplifies to

I,,~(b)=Swz(b)_,cJd2x(bKfb_1,M), (5.18)

and also theone-formappearingin themeasureddu(g) of (5.11),

dgg~= daa~+ a(dbb’~)a~+ ab(dcc’)b’a’, (5.19)

turns out, in thephysicalgauge,to be

= y,da
1 + dbb’ + V,~(b)55,d&~. (5.20)

As a result,thedeterminantfactor in (5.17) is cancelledby theonecoming from (5.20),andthe

effectivemeasureadmitsa simple form

dJteff(b) = dbb~. (5.21)

The point is that this is exactlythe measurewhich is determinedfrom the symplecticstructure
of the effective theory (5.18) obtained by the classical Hamiltonianreduction. (The pathintegral
reductionof theWZNW theoryhasbeendiscussedearlierin ref. [44] for the specialcaseof the
standardToda theory (1.1), where the measured/Leff(b) reducesto fl dq’.) This tells us that,
at leastformally, the quantumHamiltonian reduction results in the quantizationof the reduced
classicaltheory,althoughwe needa more rigorouswork concerningthepathintegralreductionin
orderto establishtheequivalencecompletely.

*) Actually, the effectiveactionalwaystakestheform (2.40)if onerestrictstheWZNW field to beof theform g abc

with a � e~,C E e
1 andb suchthat V,, (b) is invertible. Theduality betweenF andD is not necessarybut canbe usedto

ensurethis technicalassumption.
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5.3. The W-symmetry of thegeneralizedTodaaction I~(b)

In theprevioussectionwe haveseenthe quantumequivalenceof thegeneralizedTodatheories
given by (4.3) and the correspondingconstrainedWZNW theories.It follows from their WZNW
origin that thegeneralizedTodatheoriespossessconservedW-currents.It is thusnaturalto expect
that their effectiveactions,I~ in (4.3) and I~ in (4.12),allow for symmetrytransformations
yielding the W-currentsas the correspondingNoether currents. We demonstratebelow that this
is indeedthe caseon the exampleof the theoriesassociatedwith integral gradings,when the
action takesa simple form. However,we believe that thereare symmetriesof theeffective action
correspondingto the conservedchiral currentsinheritedfrom the KM algebra for any reduced
WZNW theory.

Let us consider a gaugeinvariantdifferentialpolynomial W(J) in theconstrainedWZNW theory
giving rise to theeffectivetheorydescribedby theaction in (4.3). In termsof thegeneralizedToda
field b(x), this conservedW-currentis given by thedifferential polynomial

Weff(fl) = W(M+fl), flmO~bb’. (5.22)

This equality [40,18]holds becausetheconstrainedcurrentJ and (M + fi) [whichis, incidentally,
just the Lax potentialA~in (4.4)] are related by a gaugetransformation,aswe haveseen.By
choosingsometest functionf (x+), we now associateto W~(fi) the following transformationof
the field b(x):

ôwb(y) = (fd2xf(x+)~)b(Y), (5.23)

and we wish to showthat c5wb is a symmetryoftheaction I~’j~.(b). Beforeproving this, we notice,
by combiningthedefinition in (5.23) with (5.22),that (ôwb)b~is a polynomialexpressionin f,
fi and their 8k-derivatives up to somefinite order.

We start theproof by noting that the changeof the action underan arbitrary variation ôb is
given by the formula

ôI~(b)= _Jd2y(obb_1(y), b(y)ôI~/ôb(y))

= _Jd2y(obb_1(y),O_fl(y)+ [b(y)11b’(y),M]). (5.24)

In thenextstep,we usethe field equationto replace& /i by — [b)cfb —
1,M] in theobviousequality

O_W~ff(X)= fd2y (JWeff(X)/Jfl(y),8_fl(y)), (5.25)

andthen, from thefact that & W~= 0 on-shell,we obtainthefollowing identity:

f d2y(ôW~ff(x)/öfl(y),[b(y)A?b~(y),M]) = 0. (5.26)

Of course,thepreviousargumentonly implies that (5.26) holds on-shell.However,we now make
the crucial observationthat (5.26) is an off-shell identity, i.e., it is valid for any field b (x), not
only for the solutionsof the field equation.This follows by noticing that theobject in (5.26) is a
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local expressionin b (x) containingonly x+ -derivatives.In fact, any suchobjectwhich vanishes
on-shell hasto vanishalsooff-shell, becauseonecanfind solutionsof thefield equationfor which
the x + -dependenceof thefield b is prescribedin an arbitraryway at an arbitrarily chosenfixed
valueofx.

By using theaboveobservation,it is easyto showthat öwb in (5.23) is indeeda symmetryof
theaction. First, simplyinserting (5.23) into (5.24),we have

ôwI~(b) — f &Xf(~) fd2y (5Weff(X)/Jfl(Y), O_fl(y) + [b(y)Ii~fb’(y),M]). (5.27)

We thenrewritethis equationas

SwI~&(b)= fd2Xf(X+)O_Weff(X), (5.28)

with theaid of the identities (5.26) and (5.25).This thenprovesthat

JwI~’j1(b)= 0, (5.29)

sincethe integrandin (5.28) is a total derivative,thanksto &f = 0. Onecan also see, from eq.
(5.23),that Weff is theNoetherchargedensitycorrespondingto thesymmetrytransformation

5wb
ofI~(b).

5.4. BRSTformalismfor WZNWreductions

Sincethe constrainedWZNW theorycanbe regardedas thegaugedWZNW theory (2.18),one
is naturallyled to constructtheBRST formalismfor thetheory asa basisfor quantization.Below
we discusstheBRSTformalismbasedon thegaugesymmetry(2.19)and thusreturnto thegeneral
situationof Section5.1, whereno relationshipbetweenthetwo subalgebras,F and t, is supposed.

Prior to the constructionwe herenote how the conformalsymmetry is realizedin the gauged
WZNW theory when there is an operatorH satisfying the condition (2.13). (For simplicity, in
what follows we discussthe symmetryassociatedto the left moving sector.)In fact, with suchH
anda chiral testfunction f + (x+) one candefine thefollowing transformation:

Sg = f~O÷g+ t9~f~Hg,

SA.. =f~a~A_+O+f~[H,A_],

= f~c9~A
4+ ~ (5.30)

which leavesthe gaugedWZNW action I(g,A._,A~)invariant. This correspondsexactly to the
conformaltransformationin theconstrainedWZNW theory generatedby theVirasorodensityLH
in (2.10),ascanbe confirmedby observingthat (5.30)implies theconformalaction (2.11)for the
currentwith f (x~) = f + (x +)~We shall derivelater the VirasorodensityastheNoethercharge
densityin theBRST system.

Turning to the constructionof the BRST formalism, we first choosethe spaceF* C 0, which
is dual to F with respectto theCartan—Killing form (andsimilarly f~dual to P). Following the
standardprocedure(see,e.g., ref. [45]) we introducetwo setsofghost,anti-ghostand Nakanishi-.
Lautrup fields, {c E F, ~ � F*} and {b e 1’, b_,B.. e t”}. The BRST transformation
correspondingto the (left sectorof the) local gaugetransformation(2.19) is given by

—cg, = iB+,

SBA... = Dc, S~B+= 0,

SBC = —c
2, (others) = 0, (5.31)
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with D~= ~ [Ak, ]. After defining the BRST transformation8~for the right sectorin an
analogousway, we write theBRST action by addinga gaugefixing termand a ghosttermto the
gauged action,

‘BRST = I(g,A_,A~)+ ~ + ~ (5.32)

The additionaltermscanbe constructedby the manifestlyBRST invariantexpression

1gf + ‘ghost = jK(SB + ~)fd2x((~+,A4 + (b_,A÷))

= KJd2X ((B+,A_) + (B_,A÷)+ i(~~,D.c)+ i(b_,D+b)), (5.33)

wherewe havechosenthegaugefixing conditionsasA~= 0. Thenthe path integralfor theBRST
system is given by

Z = fd~u(g) dA~dA_ dcd~.
1.dbdb...dB+ dB... e’~T, (5.34)

which,upon integrationof theghostsandtheNakanishi—Lautrupfields, reducesto (5.10). (Strictly
speaking,for this we haveto generalizethe gaugefixing conditions in (5.10) to be dependenton
the gauge fields.) By this constructionthe nilpotency,5~= 0, and the BRST invarianceof the
action,

5B’BRST = 0, are easilychecked.
It is, however,convenientto deal with the simplified BRST theoryobtainedby performingthe

trivial integrationsof A~andB~in (5.34),

IBRsT(g,c,c~,b,b_)= Swz(g)+ iKf d2x((~÷,8_c)+ (b_,O~b)). (5.35)

We note that this effectiveBRST theory is not merely a sum of a free WZNW sectoranda free
ghostsectorasit appears,but ratherit consistsof thetwo interrelatedsectorsin thephysicalspace
specifiedby the BRST chargedefinedbelow. At this stagethe BRST transformationwhich leaves
thesimplified BRST action (5.35) invariant reads

S~g= —cg, SBC+ = —irr.{i(i9~gg’ —M)+ (cë+ + ë÷c)],

= —c2, 5B (others) = 0, (5.36)

where ?Vp. = >, y7) (y, is the projectionoperatoronto the dual spaceF*, with basesnormalized
by (y~,~) = 5,,. From theassociatedconservedNoethercurrent,&jB÷= 0, the BRST chargeQ~
is definedto be

Qs=f1xti~+(x) =fdx+(c,8÷gg_1_M_ce+). (5.37)

Thephysical spaceis then specifiedby thecondition,

Qs~phys)= 0. (5.38)

In the simple caseof the WZNW reductionwhich leadsto the standardToda theory, the BRST
charge(5.37) agreeswith the onediscussedearlier [46].
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In thecasewherethereis an H operator which guarantees the conformalinvariance,the BRST
system also has the correspondingconformalsymmetry,

Sg = f~.9÷g+ ~9~f~Hg, Sb = ~
Sc = f~O~c+ 8~f~[H,c], Sb =

Së~ ~ +O~f~(ë~+ [H,ë~]), (5.39)

inheritedfrom theone (5.30) in the gaugedWZNW theory.If the H operator further provides a
grading,onefinds from (5.39) that thecurrentsofgrade—hhavethe (left) conformalweight 1 — h,

exceptthe H-component,which is not a primaryfield. Similarly, the ghostsc, ë÷of gradeh, —h
havetheconformalweight h, 1 — h, respectively,whereasthe ghostsb, b areconformal scalars.Now
we define thetotal Virasorodensityoperator~ from the associated Noether current, &j~= 0,

by

f dx+j÷C(x) = !fdx+f+(x+)Ltt(x) (5.40)

The (on-shell) expressionis foundto be thesumofthetwo parts,L10~= LH + Lgho5t,whereLH is
indeedtheVirasorooperator(2.10) for the WZNW part,and

LghO8t = iic((~+,O+c) + O~(H,cë~+ ~+c)) (5.41)

is thepart for theghosts.TheconformalinvarianceoftheBRST charge,SQ~= 0, or equivalently,
theBRST invarianceof thetotal conformalcharge,SBLWt= 0, arereadily confirmed.

Let us find the Virasorocentreof ourBRST system.The total Virasorocentrectot is givenby the
sum of the two contributions,c from the WZNW part and cghost from the ghostone. The Viraso
centrefrom LH is given by

c = kdimQ — 12k(H,H), (5.42)

wherek is the level of the KMalgebra and g is thedualCoxeternumber.On theotherhand, the
ghostscontributeto theVirasorocentreby theusual formula,

cghOS~= —2~[1 + 6h(h — 1)], (5.43)

where the summationis performedover the eigenvectorsof adH in the subalgebraF. [Onecan

confirm (5.43) by performingthe operatorproductexpansionwith Lgh0~in (5.41).]

5.5. The Virasoro centrein threeexamples

By elaboratingon thegeneralresultof theprevioussection,we herederiveexplicit formulasfor
the total Virasorocentrein threeinterestingspecialcasesof theWZNW reduction.

5.5.1. The generalized Toda theory I~’j~. (b)
In this casethesummationin (5.43) is overtheeigenstatesofadH with eigenvaluesh > 0, since

F = Q~.We canestablishaconciseformulafor ctot, formula (5.46) below,by usingthefollowing
group theoreticfacts.
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First, wecanassumethatthegradingoperatorH E Q is from theCartansubalgebraof thecomplex
simpleLie algebra0~containing0. Second,thescalarproduct(, ) definesa natural isomorphism
betweenthe Cartansubalgebraand the spaceof roots, and we introduce the notation 6 for the
vectorin root spacecorrespondingto H underthis isomorphism.More concretely,this meansthat
we set H = ~ oH1 by using an orthonormalCartanbasis, (H1,H~)= S). Third, we recall the
strangeformulaof Freudenthal.-deVries [47], which (by taking into accountthenormalizationof

) andtheduality betweentheroot spaceand theCartansubalgebra)reads

dimO = (12/g)~pj
2, (5.44)

where p is theWeyl vector,given by half the sum of the positive roots. Fourth, we choosethe
simplepositive roots in sucha way that the correspondingstepoperators,which are in generalin
0~andnot in 0, havenon-negativegradeswith respectto H.

By using theaboveconventions,it is straightforwardto obtainthe following expressions:

I = dimF = ~ (dim ~— dimge’),
h>0

>2h = 2(p.ö),
h>0

>2h2 = ~tr(adH)2= g(H,H) = g~ö~2, (5.45)

h>0

for the corresponding terms in (5.43). Substituting these into (5.43) and also (5.44) into (5.42),
one can finally establish the following nice formulaof the total Virasorocentre [14]:

1 2
ctot = c + Cghost = dim ci’ — 12 ~/k + gO — p . (5.46)

~/k + g

In particular, in the case of the reduction leading to the standardToda theory (1.1) the result
(5.46) is consistent with the one directly obtained in the reduced theory [8,10]. ‘~

5.5.2. TheWg-algebraf?r half-integralsl(2) embeddings
For sI(2) embeddings

1the role of the H is played by M0 and in the half-integralcasewe have
F = + P1~= 0>o — Ql/2. It follows that thevalueof thetotal Virasorocentrecan now be
obtainedby substractingthecontributionof the “missingghosts” correspondingto Q1/2, which is
~dim 0l/2~from theexpressionin (5.46).We thus obtain that in this case

___ 2
ct01=N~—~N5—l2~/k+gd— p , (5.47a)

where

N~= dimQo , N5 = dim01/2, (5.47b)

arethenumberoftensorand spinor multiplets in thedecompositionofthe adjointof0 underthe
sl(2) subalgebra8, respectively.We notethat, as proven by Dynkin [39], it is possibleto choose

*) More precisely,the centre(5.46) agreeswith that of refs. [8,10] if the “coupling constant”of the Toda theoryk is
replacedby k±g. Thecauseof theshift in the contextof theWZNW reductionis discussed,e.g., in ref. [48).
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a systemof positive simple rootsso that thegradeof thecorrespondingstepoperatorsis from the
set {0, ~, 1 }, and that 0 is (~x) theso called definingvectorof the si (2) embeddingin Dynkin’s
terminology.

As hasbeenmentionedin section3.4, Bais et al. [16] (see also ref. [29]) studieda similar
reductionof the KM algebrafor half-integral sl (2) embeddingswhere all the currentcomponents
correspondingto 0>.o areconstrainedfrom thevery beginning.In theirsystem,theconstraints(3.59)
of 01/2, being inevitably secondclass,are modifiedinto first classby introducingan auxiliary field
to eachconstraintof 0 1/2. Accordingly, the auxiliary fields give rise to the extra contribution
— ~dim 01/2 in thetotal Virasorocentre.It is clear that addingthis to thesumof theWZNW and
ghost parts (which is of the form (5.46) with M0 ~ubstitutedfor H), renders the total Virasoro
centreof their systemidentical to that of our system,given by (5.47). This resultis natural if we
recall the fact that their reducedphasespace(aftercompletegaugefixing) is actually identical to
ours. It is obviousthat our method,which is basedon purely first classKM constraints and does
not require auxiliary fields, provides a simpler way to reach the identical reduced theory.

5.5.3. The W~’-algebras
By usingtheresultsof section3.5 we can easilycomputetheVirasorocentreof the W~-a1gebras.

We considertheconformal structuregiven by LM0, whereM0 is the sI (2) generator(3.68),and
introduceghostsfor the first class constraintsdefined by F, eq. (3.74).The contributionto the
Virasoro centre from LM0 is given by

(n
2 — l)k

C= k+n —km(m+1)[3n—(2m+l)l]. (5.48)

Taking into account the multiplicities of the grades in F, we find from (5.43)

cghost = —2 dimVo + dim P1i2 — 2 > [1 + 6i ( i — 1)] dim 0~

= —(m3+ 4m2 + 3m + 1)12 + [n(2m3+ 3m2 + 6m + 2) + 111—n2 (3m2 + 2). (5.49)

The result disagrees with the one obtained for Jl’~ in ref. [261, where instead of our LM
0 a

different L11 was adoptedfor defining the conformal structure and (insteadof performingthe
symplectichalving) a set of auxiliary fields was introducedto render the constraintsfirst class.
This disagreement is not surprising because of the ambiguity in defining the conformal structure
of W,~’, i.e., in choosingthe H in (2.10), which eventually reflects in the valueof the Virasoro
centre.In addition, thereis alsoan arbitrarinessin thenumberof auxiliary fields introduced,and
the Virasoro centre agrees only when one uses the minimal numberof fields (with thesameH).

6. Discussion

The main purpose of this paper has been to study the general structureof the Hamiltonian
reductionsof the WZNW theory. Consideringthe number of interestingexamplesresulting from
the reduction, this problem appears important for the theoryoftwo dimensionalintegrablesystems
andin particularfor conformalfield theory.

Our most important result perhapsis that we establishedthe gaugedWZNW setting of the
Hamiltonianreductionby first classconstraintsin full generality.It was then usedhereto setup
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the BRST formalismin thegeneralcase,and for obtaining the effective actionsfor the left—right
dual reductions.We hopethat thegeneralframeworkwe setup will be useful for furtherstudiesof
this very rich problem.

The other major concernof the paper has been to investigatethe W-algebrasand their field
theoretic realizationsarising from the WZNW reduction.We found first class KM constraints
leadingto the Wg-algebras,which allowedus to constructgeneralizedTodatheoriesrealizingthese
interestingextendedconformal algebras. We believe that the sl (2) embeddingsunderlying the
We-algebrasare to play an importantorganizing role in generalfor understandingthe structure,
especially the primary field content, of the conformally invariant reduced KM systems.This is quite
anaturalideasincewe haveseenthat thepresenceof an sl (2) embeddingcanbe exhibitedin every
polynomialandprimaryKM reduction and that the Wj-algebras are nothing but further reductions
of Wg-algebrasbelongingto particularsl (2) embeddings(seealso ref. [37]). The importanceof
sl (2) structuresin classifyingW-algebrashasbeenadvocatedin a recentpaper [49] aswell, on
the basisof different arguments.In our study of W-algebraswe employedtwo (apparently) new
methods, which are likely to have a wider range of applicability thanwhat we exploitedhere.The
first is the methodofsymplectichalving, wherebywe constructed purely first class KM constraints
for theW~-aswell asfor the W~-algebras.Thesecondis what we call thesl(2) method, which can
besummarizedby sayingthat, if onehasconformally invariantfirst classconstraintsgivenby some
(F,M_) with M_ nilpotent,thenoneshouldbuild thesi(2) containingM... andtry to analysethe
systemin termsof this sI(2). We usedthis methodto investigate,in thenon-degeneratecase,the
generalizedTodasytemsbelongingto integral gradings,and also to provide the We-interpretation
ofthe W~-algebras.

We wish to remarkherethat, as far as we know, the technicalproblemconcerningthe inequiva-
lenceof thoseWg-algebraswhich belongto grouptheoreticallyinequivalentsI(2) embeddingshas
not been tackled yet.

It is well known [22] that the standard W-algebras can be identified as the second Poisson
bracket structureof the KdV-type hierarchiesof Drinfeld—Sokolov [5]. This fact leads to the
questionwhetherthereis a relationshipbetweenW-algebrasandintegrablehierachiesalso in more
generalcases[16,17,28,50—52].

Wegavea generallocal analysisof the effectivetheoriesarisingin theleft—right dualcaseof the
reduction,and investigatedin particularthegeneralizedToda theoriesobtainedby the reduction
in some detail. In the case of the generalizedTodatheoriesassociatedwith the integralgradingswe
exhibitedtheway in which the W-symmetryoperatesas an ordinary symmetyof the action, and
saw that the quantumHamiltonian reductionis consistentwith the canonicalquantizationof the
reducedclassicaltheory.It would be nice to havetheanalogousproblemsundercontrolalso in more
general cases. In our analysis we restricted the considerations to Gauss decomposable fields. The
fact that the Gauss decomposition maybreak down can introduce apparent singularities in the local
description of the effective theories, but the WZNWdescription is inherently global and remains
valid for non Gaussdecomposablefields as well [12,13]. It is hencean interestingproblemto
furtheranalysethe global (topological) aspectsof thephasespaceof the reducedWZNW theories.

We should also notethat it is possibleto removethe technicalassumptionof left—right duality.
In particular, the study of purely chiral WZNW reductionscould be of importance,as they are
likely to give naturalgeneralizationsof Polyakov’s2d gravity action [43,12].

In this paperwe assumedthe existenceof a gaugeinvariantVirasorodensityL,~,of the form
givenby (2.10), for obtainingconformallyinvariantreductions.However, theexampleof appendix
A indicates that there is anotherclass of conformally invariant reductions,where the form of
the surviving Virasoro density is different from that of an LH. The study of this novel way of
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preservingthe conformal invariancemay opena newperspectiveon conformal reductionsof the
WZNW theory.

Therearemanyfurther interestingquestionsrelatedto theHamiltonianreductionsoftheWZNW
theory,which we couldnot mentionin this paper.We hopeto be ableto presentthosein future
publications(seealso ref. [53]).
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AppendixA. A solvablebut not nilpotentgaugealgebra

In all thecasesof thereductionwe consideredin chs. 3 and4, thegaugealgebraF wasagraded
nilpotent subalgebraof 0. On theotherhand,we haveseenin section2.1 that the first-classnessof
the constraintsimplies thatF is solvable.We want hereto discussa constrainedWZNW model for
which the gaugealgebrais solvablebut not nilpotent. Interestinglyenough,it turns out that in this
exampleno H satisfying (2.13) exists which would render the constraints conformally invariant.
However,conformal invariancecanstill be maintained,showingclearly that theexistenceof such
an H is only a sufficient but not anecessarycondition.

We choosetheLie algebraQ to besl (3,R) andthe gaugealgebraF asgeneratedby thefollowing
threegenerators:

/0 1 0\ /0 0 1\
= Ef~,1 = ( 0 0 0 ~, ~‘2= EQ1~Q2= 0 0 0 , (A.la)

\0 0 0/ \0 0 0)

fl/V’s 0 0 \
= + H2) + ~(E~2—EQ2) ( 0 —l/(2V~) 1/2 ) , (A.lb)

v3 \~0 —1/2 —l/(2~/~))

where the Cartan—Weylgeneratorsare normalizedby [H1,E±~1]= ±E±Qand [EQ,E_Q,] = 2H1,
for thesimple positive roots a. Note that, being diagonalizableover thecomplex numbers,y~is
not a nilpotentoperator.The algebraofF is

[Y1,Y2] = 0, [Yl,Y3] = —~V’~y1+ ~Y2, [~2,Y3] = — ~v~’i~’2. (A.2)

It is easyto verify that F is a solvable,not nilpotent Lie algebra. It qualifies asa gaugealgebra
since Tr(ytyj) = 0.
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It is readily checkedthat thespacesF’ and [F, F]’ are given by

F’ = span{H2,E~1,E~1÷~2,2H1+ V’~E~2,2H1—

= SPan{HI,H2,EQI,EQL+Q2,EQ2,E_Q2}. (A.3)

[F,F]’/F’, which is the spaceof theM’s leading to first classconstraints,is one dimensional,
andwe cantake

/2 0 0\
M = UY —~=(4H1+ 2H2) = .-~=f0 -l 0 (A.4)

v3 v3~0 0 —1)

without loss ofgenerality.
Thenextquestionis theconformalinvariance.As discussedin section2.1, asufficient condition

for conformal invarianceis providedby the existenceof a (modified) Virasorodensity Lif =

Lyj~— O~(H, J(x)) wealdycommutingwith theconstraints.For this to work, thegeneratorH must
satisfy the three conditions in (2.13). However, it is an easymatterto showthat thoseconditions
are contradictoryin thepresentcase,and thereforeno suchH exists.

The above analysis can also be carried out for the simpler gaugealgebraspannedby ~3 only.
This gauge algebra is obviously nilpotent, since it is Abelian.Nevertheless,thepreviousconclusion
remains:Thereexistsno H which would render the first classconstraintsconformallyinvariant, for
any M ~ 0 from [F,FJ’/F’. This shows the importanceof thegaugegeneratorsbeingnilpotent
operators,ratherthanthegaugealgebrabeing nilpotent. It would be interestingto know whether
thereis always anH satisfying (2.13) for gaugealgebrasconsistingof nilpotentoperators.

Although there is no H such that the constraintsare preservedby LH, we can nevertheless
constructanotherVirasorodensityA which does preserve the constraints. It is given by

(A.5)

For M given in (A.4), the constraints read

(y1,J(x)) = (y2,J(x)) = 0, (y3,J(x)) = ~u, (A.6)

andarecheckedto weaklycommutewith A: {A(x), (y,,J(y))} ~ 0 on theconstraintsurface(A.6).
(Note that, whengoing from Lyj~to A, we havenot changedtheconformalcentralcharge,which
is classicallyzero.) Thereforewe expect the reducedtheory to be invariantunderthe conformal
transformationgeneratedby A being its Noetherchargedensity.We now proceedto show that it is
indeed the case. Before doing this, we displaytheform of A on theconstraintsurface:

A(x) = T?(x) + T~(x), (A.7a)

T1 = ~(EQ2+ E_Q2,J), 7’2 = (H2,J). (A.7b)

Following theanalysisof section2.3, we take theleft andright gaugealgebrasto be dual to each

other ((y1,
5~j)=

1’ = span{y
1,y2,y3}, P = span{~l,~2,~3} = span{y~,y~,y~},

andconsiderM= 1uY and j~f= vYt = vY. We write the SL(3,R) groupelementsasg = a~b~c,
with a E expF, b E exp11 and c � expF, with fl = span{Y, H2} theCartansubalgebra.We did
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not conformto the generalprescriptiongiven in section2.3, which requiredto write g = abc with
b � expB for aspace13 complementaryto F + F in 0, eqs.(2.25),(2.26). Had we donethat, the
resultingeffectiveactionwould havelookedmuchmorecomplicated.Here,we simply take a setof
coordinates in which the action looks simple.

The reduction yields an effective theory for thegroupvaluedfield b, of which the effective action
is given by (2.40) with (2.29b).Using the parametrizationb = exp (a1’) . exp (2flH2), the explicit
form of the effective actionis

Ieff(a,P) = fd2x (0+aô_a+ ~ (0÷a— ~)(0_a — v)) (A.9)cosh/J

By inspection,we see that this effectiveaction is going to be conformallyinvariant if the field /1
is a scalar, and if the transformationof a is suchthat ~u— 0+a and ii — 0_aare (1,0) and (0,1)
vectors, respectively.It implies that, underaconformal transformationx± x±— f± (x±), the
fields a and /3 transform as

= f~ (0~a—~u)+f (0_a—u),

c5fl = f~~fl + f~0_fl. (A.l0)

We now want to show our previousclaim: the action (A.9) is conformally invariant under
the conservedVirasorodensityA (x), which reproduces the f + -transformations(A. 10) by Poisson
brackets.(Thef-transformationscould alsoberealizedby constructingthecorrespondingVirasoro
densityA in the right-handedsectorin a similar.way.) For this, we first notethat in termsof the
reducedvariableso~and /3 the two current componentsT1 and 7’2 of (A.7b) read

Ti=—(~u—0+a)tanhfl, T2=0~fl. (A.ll)

Theseexpressionscanbe obtainedas follows. Writing g = a~b~candusingthe constraints(2.29b),
the constrainedcurrent reads

J=a[T(b)+0+b.b~’]a’ +0~a~a~’, (A.l2)

with T(b) given by (2.29). Although neither T1 nor I’2 is gaugeinvariant, thequantity wewant to
compute, A(x), is gauge invariant.As a result, it cannotdependon the gaugevariablescontained
in a. Hencewe canjust as well put a = 1 in (A.12). Doing that, the definitions (A.7b) yield
(A. 11). We thusfind the following expressionfor A:

A = (~u_0÷a)2tanh
2fl+(0+,8)2. (A.l3)

It is an easymatterto show,by using the field equationsobtainedfrom the action (A.9),

sinh2fl0+0_a+tanhfl[0+fl(0_a—u)+0_fl(0+a—u)]=0,

cosh2fl0~0_fi—tanhfl(0_a—v)(0+a—u)=0, (A.14)

thatA is indeedchiral, satisfying

0_A —0. (A.l5)

Moreover,onealso checksthefollowing Poissonbrackets:

{A(x),a(y)} —(0~a—u)ô(x’—y’), {A(x),fl(y)} = —(0~/i)ö(x’—y1), (A.l6)
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which reproducethe transformations(A. 10). Thusthe densityA features all what is expectedfrom
the Noetherchargedensityassociatedwith the conformalsymmetry.

Finally, wepresentherefor completenessthegeneralsolutionof the equationsof motion (A. 14).
Along the lines of section2.3, it canbe obtainedas follows:

jsjflh(OL—OR)

a = (‘lL + ‘lR) + tan~~5iflh(OL+ OR) tan~L—PR)) + 4ux~+

cosh(2/3) = cosh(
2OL) cosh(2OR) + siflh(20L) sinh(2OR)cos(2(2L — PR)), (A.17)

where {‘lL, ,%L, OL} and{‘ia, PR,OR} arearbitrary functionsofx + andx only, respectively,and the

threefunctionsof eachchirality arerelatedby the equations
O+7L+O+2LCO5h(2OL) = 0, 0_IIR+0_pRcosh(2OR)= 0. (A.18)

Appendix B. H-compatible sl(2) andthe non-degeneracycondition

Our purposein this technical appendix is to analysethe notion of the H-compatible sl (2)
subalgebra,which has beenintroducedin section 3.4. We recall that the sl(2) subalgebraS =

{M_,M
0,M~} of the simple Lie algebra g is called H-compatibleif H is an integral grading

operator, [H, M±]= ±M±,and M±satisfy the non-degeneracyconditions

Ker(adM~)fl0~’= {0}. (B.l)

Note that the secondproperty in this definition is equivalentto the fact that S commuteswith
(H — M0). We prove herethe resultsstatedin section3.4, andalsoestablishan alternativeform of
the non-degeneracycondition, which will be usedin appendixC.

Let us first consideran arbitrary (not necessarilyintegral) gradingoperatorH of 0 andsome
non-zeroelementM_ from 0:~ri.We wish to showthat for eachsuchpair (H, M_) thereexists an
sl(2) subalgebraS = {M..., M0,M~}for whichM~� ~ To exhibit the S-triple in question,we
needtheJacobson-Morozovtheorem,which hasalreadybeenmentionedin section3.4. In addition,
we shall also use the following lemma,which can be found in ref. [33] (lemma7 on page98,
attributedto Morozov).

Lemma. Let £ be a finite-dimensionalLie algebraover a field of characteristic0 and suppose £
containselementsh ande such that [h, e] = —eand h E [~, e]. Then there existsan element
f � £ such that

[h,f] =f, [f,e] =2h . (B.2)

Turningto theproof, wefirst usetheJacobson—Morozovtheoremto find generators(m_, m0, m+)
in 0 completingm_ M_ to an sl (2) subalgebra.We thendecomposethe elementsm0 andm+
into their componentsof definitegrade,i.e., we write

= >m~, m÷= >m~, (B.3)
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where n runs over the spectrumof the gradingoperatorH. Since M_ is of grade —1, it follows
from the sl(2) commutationrelationsthat

[mg, M_] = —M_ , [m~, M_] = 2mg, (B.4)

and theserelationstell us that h = m~and e = M_ satisfy the conditions of the above lemma.
Thus thereexists an elementf satisfying (B.2), which we can write as f = ~ f” by using the
H-gradingagain.The proof is finished by verifying thatM~ f1 and M

0 ~ togetherwith M_
spantherequiredsl (2) subalgebraof g.

From now on, let H be an integralgradingoperator.Foran elementM±of grade±1, respectively,
the pair (H, M±) is called non-degenerateif it satisfies the corresponding condition in (B. 1).

Weclaim that, if S = {M, M0, M~} is an sl (2) for which thegeneratorsM~are from 0~, then
the non-degeracy of the pairs (H, M_) and (H, M~)are equivalent statements. This will follow
immediately from the sl (2) structure if we prove that the non-degeneracy of the pair (H, M~)is
equivalent to the following equality:

dim Ker(adM±)= dim g~1~ (B.5)

It is enough to prove this latter statementfor apair (H, M_), sincethen for apair (H, M~)it
can be obtained by changing H to —H. To prove this let us first rearrange the identity

dim 0 = dim Ker (adM) + dim [M_, 01 (B.6)

by usingthe gradingas

dimKer(adM) — dimoi’ = (dimg~— dim[M_, G~])

+ (dimQ~’ — dim[M_,g~’ + 0~’]). (B.7)

Since both terms on the right-hand side of this equation are non-negative, we see that

dim Ker(adM_) � dim 0~’, (B.8)

and equality is achieved here if and only if

dim~~= dim[M_,Q~’] , [M_,~ + 0~]= Q~. (B.9)

On the other hand, we can show that the two equalities in (B.9) are actually equivalent to each
other. To see this, let us assume that the secondequality in (B.9) is not true. This is clearly
equivalent to the existence of some non-zero u � 0~’ such that (u, [M_, g~’+ 0~])= {0}. By
the invariance and the non-degeneracy of the Cartan—Killing form, this is in turn equivalent to
[M_, u] = 0, which meansthat the first equality in (B.9) is not true. By noticing that the first
equality in (B.9) is just the non-degeneracyconditionfor the pair (H, M_), we can conclude that
the non-degeneracyconditionis indeedequivalentto theequalityin (B.5).

Wewish to mention a consequence of the results proven in theabove.To this endlet us consider
a non-degenerate pair (H, M_). By our more general result, we know that there exists such an sl (2)
subalgebra S = {M_,M0,M~} for which M~is from 0~.Thepoint to mention is that this S is
an H-compatible sl (2) subalgebra, as has already been stated in section 3.4. In fact, it is now easy
to see that this follows from the equivalence of (B. 1) with (B.5) by taking into account that the
kernelsof adM~are of equal dimension by the sl (2) structure.
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AppendixC. H-compatiblesl(2) embeddingsandhalvings

In section 3.4, we showed that, given a triple (F,M,H) satisfying the conditions for first-
classness, conformal invariance and polynomiality [eqs. (2.6), (2.13), (3.2)—(3.4)], the corre-
sponding W-algebrais isomorphicto W~,providedthat H is an integral gradingoperator.Here
S = {M_,M0,M~} is somesl (2) subalgebracontainingM_ = M. A naturalquestionis what sl (2)
subalgebrasarise in this way,or equivalently,given an arbitrarysl(2) subalgebra,cantheresulting
Wy-algebrabe obtainedas theW-algebracorrespondingto thetriple (F,M,H), for someintegral
gradingoperator H? Whetherthis occursor not dependsonly on how thesl(2) is embedded,andit
is thereforea puregrouptheoreticquestion.Accordingto section3.4, the sl (2) subalgebrashaving
this propertyare the H-compatibleones.This appendixis devotedto establishingwhena given
si (2) embeddingis H-compatible,andif so,whatthecorrespondingH is.

The questionof an sl(2) being H-compatibleis very much relatedto anotherone, which was
mentionedat theend of section4.2. We notedthat in someinstances,a generalizedTodatheory
associatedto ansI(2) embeddingcouldaswell beregardedasa Todatheoryassociatedto an integral
gradingoperatorH. Thismeansthattheeffectiveactionofthe theoryis aspecialcaseofboth (4.12)
and (4.3) at the sametime. We haveseenthatthis is the casewhenthe correspondinghalvingis
H-compatible,i.e.,whentheLie algebradecomposition0 = (O>i + P112)+ (Q1/2 + Qo + Q—1/2) +

(1’—1/2 + 0~_~) (subscriptsare Mo-grades)can be nicely recastinto 0 = g~’~+ 0~’+ g<h’_1~Our
secondproblem,addressedat the endof the appendix,is to find the list of tifose sI(2) su6algebras
which allow for an H-compatiblehalving. Clearly, an sl(2) subalgebrawhich possessesan H-
compatiblehalving is also H-compatiblein theabovesense,but it will turn out that the converse
is not true.

Let S = {M_,M0,M~} be an sl (2) subalgebraembeddedin a maximally non-compactreal
simpleLie algebrag. For theclassicalalgebrasA,, B1, C, andD,, thesereal forms are respectively
sl(l + 1,R), so(l,l + 1,R), sp(21,R) and so(l,l,R). (We do not consider the exceptionalLie
algebras.)For S to be an H-compatiblesl(2), one should find an H in 0 with the following
properties:

(i) adH is diagonalizablewith eigenvaluesbeingintegers,
(ii) H — M0 mustcommutewith the S-triple,
(iii) dimKer(adH) = dimKer(adM~).

We remarkthat heretheequivalenceofrelations(B. 1) and (B.5), provenin thepreviousappendix,
hasbeentakeninto account.Underconditions (i ) — (iii), the decomposition

F’ = [M_,FJ +Ker(adM+) (C.l)

holds, whereF = 0~in the (F, M_,H) setting, or F = P112 + ~ in the sl(2) setting. (For
clarity, note that thesetwo gaugealgebrasare in generalnot equal.)As a consequence,J~j(x) =

M_ + fred (x) with j~ (x) E Ker(adM ) is a DS gaugein both settings,and thus the W-algebras
arethe same.

In orderto answerthequestionof whetheran si (2) embeddingis H-compatible,it is useful to
know what theseembeddingsactuallyare. For a classicalcomplexLie algebra

0c, this questionhas
beencompletelyansweredby Malcev (andDynkin for theexceptionalcomplexLie algebras)[391.

The resultcan be nicely statedin termsof the way the fundamentalvectorrepresentationreduces
into irreduciblerepresentationsofthe sl(2):

A
1: the sl (2) reductionof the (1 + 1)-dimensional representationcanbe arbitrary,

B1: the (2! + 1)-dimensionalrepresentationof B, reducesin suchaway that the multiplicity of
eachsI(2) spinor appearingin the reductionis even,
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C1: the 2/-dimensional representation of C, reducesin sucha way that the multiplicity of each
sl (2) tensor appearingin the reductionis even,

D1: same restriction as the B, series:the spinorscomein pairs.
The above conditions are necessary and sufficient, i.e., every possible si (2) content satisfying the
aboverequirementsactually occurs for some sI (2) embedding. Moreover, for the classical complex
Lie algebras,the way the fundamental reduces completely specifies the si (2) subalgebra, up to
automorphisms of the embedding 0~[39].

The above description of the sl(2) embeddings remains valid for the maximally non-compact
classical real Lie algebras, except the last statement.First of all, this means that the above restrictions
apply to the possible decompositions of the fundamental under the si (2) subalgebras in the realcase
as well. it is also obvious that those sl(2) embeddingsfor which thecontent of thefundemantal
is different are inequivalent. The converse, however, ceases to be true in the real case in general:
inequivalentsl(2) subalgebras can havethe same multiplet content in the fundamental of 0. The
answerto theproblemof H-compatibilitywill in fact be providedby looking more closely at the
decompositionof the fundamentalof g under the sl (2) subalgebrain question,as will be clear
below.

As an immediate consequenceof condition (ii), H~—M0 is an sl (2) invariant and canonly depend
on the value of the Casimir. If, in the reductionof the fundamentalof 0, a spin j representation
occurswith multiplicity m3, the sl (2) generatorsM andH can be written

MEM~3~XImj, (C.2a)

H=Mo+~I2~~1xD(f), (C.2b)

where Il~denotesthe unit n x n matrix, and the D (j )‘s are m~x m~diagonal matrices. Hence,
within each irreducible representation of sl(2), H is equalto M0 shifted by a constant. Obviously,
this is also true in the adjoint representationand, in turn, this implies that adH takesthe value
zeroat mostonce in eachsl (2) multiplet in theadjoint ofg. From condition (iii), adji must take
the value zero exactly once, i.e., each si (2) representation must intersect Ker(adH) exactly once.
In particular, the si (2) singletsmustbe adH eigenvectorswith zeroeigenvalue.

The trivial solutionH = M0 exists wheneveradM0 is diagonalizableon the integers,i.e., when
thereductionof thefundamentalof 0 is either purely tensorialor purely spinorial. From now on,
we supposethat the reductioninvolves bothkindsof sl (2) representations.

C.1. A1 algebras

The problem for the A, series is simple to solve since, in this case, an H always exists. As a
proof, we explicitly give an H which fulfills all the requirements.In (C.2b), we set

D — fA~1mj ifj�N, C3

~~~(A+~Imj iff�N+~, ( . )

where )~ is a constant that makes H traceless.In order to show that the H so defined has the
required properties, we recall that for the A1 algebras,the adjoint representationis obtainedby
tensoringthe fundamentalwith its contragred.ient.As a result, the rootsare the differencesof the
weightsofthefundamental(up to a singlet) andwe have

ad11 = adM0 +[D(fi)—D(f2)], (C.4)
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where f~ and f2 are the spinsof the statesin the fundamentalrepresentationfrom which agiven
state in the adjoint representationis formed.That theconditions (i ) — (iii) are satisfiedis obvious
from the fact that adH = adM0 on tensorsand adH = adM0±~on spinors,with + ~ occurring as
many timesas —

It shouldbe pointedout that (C.3) is by no meansthe only solution.Sincein theproductf~x 12,
the highestweights havean M0-eigenvalueat least equalto f i — 321, anothersolution is given by
D(j) = (2+f)Jmj.

C.2. C, algebras

For the symplecticalgebras,the adjoint representationis obtainedfrom the symmetricproduct

of the fundamentalwith itself andwe thereforehave
ad11 = adM0 + [D(f1) + D(j2)]. (C.5)

Since the symmetric product of a tensorwith itself producesa singlet, which must belong to
Ker(adH),we have2D(t) = 0 for everyintegerj = t. Hencein the fundamentalrepresentation,
H = M0 on tensors.Similarly, the symmetricproduct of a spinor with itself always producesa
triplet, onememberof which mustbelongto Ker(ad11).This implies that the diagonalentriesof
2D(s) are either0 or ±1, for everyhalf-integerj = s. However,D(s) cannothavea zero on the
diagonal,becauseadH would not be integralon the representationscontainedin s x t. Therefore,
in thefundamental,H = M0 ±~ on spinors.

Let usnowlook at them3 spinorrepresentationsof spin s, says
1,~ , ~m

3~The products~X Si

of anytwo of those containsa singlet, and that implies D(se) + D(NJ) 0. This equality must
hold for anypair of spin s representations,which is impossibleunlessm5 � 2.

Let us considerthe restriction g~of the symplectic form to the spin s representations.The
restrictedform is non-degenerate,becausethe original non-degeneratemetric is block-diagonalwith
respectto the eigenvaluesof the sl (2) Casimir.

If m3 = 1, thenthe H given by M0± I on the uniquespin s representation,shouldbe in the
symplecticalgebra:g5H + Htgs = 0. Since M0 is alreadysymplectic,we requirethat the identity
be symplectic,which is impossiblefor anon-degenerateform. Hencem5 mustbe 2.

If m5 = 2, H — M0 andg~look like (in the basiswhereM0 andH arediagonal)

H_Mo=±(~ °, gs= (_‘~~~), (C.6)

wherethe blocksa andc are antisymmetric.H — M0 being symplectic leads to a = c = 0.
To summarize,for an integral H to exist, the sl(2) embeddingmust be such that (i) the

multiplicity of anyspinorrepresentationin the fundamentalof 0 is 2, (ii) if (s,s’) is sucha pair
of spinors,they mustbe thedualof eachotherwith respectto the symplecticform. If thesetwo
conditionsare met, thenH is given in the fundamentalby

H — f M0 on tensors, C ~
j M0 +1— ~ on a pair of spinorss,is’. . )

Conditions (i)—(iii) are satisfied since (C.7) implies adH = adM0 on singlets, adH = adM0±(l or
0) on tensorsand adH = adM0±~on spinors.
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C.3. B, andD, algebras

The analysishereis similar to what hasbeendonein C.2, andwe can thereforego throughthe
proofquickly.

Fortheorthogonalalgebras,theadjointis got from theanti-symmetricproduct of the fundamental
with itself andwe still have

ad11 = adM0 +[D(fi) +D(j2)]. (C.8)

The antisymmetricproductof a tensor(spinor)with itself producesa triplet (singlet), sothat with
respectto the symplecticalgebras,the situationis reversedin the sensethat the tensorsand the
spinorshavetheir roles interchanged:H = M0± on tensors,H = M0 on spinorsand mt � 2 for
anytensorrepresentationof spin t.

If, as in C.2, welook atthe restrictiong1 of the orthogonalmetricto the spin t tensors,we have
= 2 on accountof the non-degeneracyof g~. From this, we get at oncethat therecan be no

solution for the B1 algebras.Indeed,the fundamentalbeing odd dimensional,at least one tensor
representationmust comeon its own.

On the 2(2t + 1)-dimensionalsubspacemadeup by the two spin t tensors,H — M0 and g1 take
the form

H_Mo—_±(~ °~)~~t= (~~), (C.9)

whereaandc arenow symmetric.RequiringthatH — M0 be orthogonal,weagainobtain a = c = 0..

Therefore,for theorthogonalalgebras,we get the following conclusions.Thereis no solutionfor
the B, seriesif the sl(2) embeddingis not integral.As to the D, series,the sl(2) embeddingmust
be suchthat (i) everytensorin thefundamentalof Q hasamultiplicity equalto 2, (ii) if (t, t’) is
suchapair of tensors,theymustbe the dual of eachotherwith respectto the orthogonalmetric.
In this case,H is given in the fundamentalby

H — fM0 +/— ~ on apair of tensorstJt’, (C 10)

I. M0 on spinors.

Summarizingthe analysis,theH-compatiblesl(2) embeddingsarethe following ones:
A1: anysl(2) subalgebra,
B1: only the integralsl(2)’s,
C1: thosefor which eachspinor occursin the fundamentalof C1 with amultiplicity 0 or 2, the

pairsof spinorsbeingsymplecticallydual,
D1: thosefor which each tensoroccursin the fundamentalof D, with amultiplicity 0 or 2, the

pairsof tensorsbeingorthogonallydual.
The readermaywish to checkthatthe aboveresultsareconsistentwith theisomorphismsB2 C2
andA3 ‘S-’ D3.

We now cometo the secondquestionalluded to at the beginningof this appendix, namely
the problem of H-compatiblehalvings. From the defmition, an sl(2) subalgebraallows for an
H-compatiblehalving if in addition to conditions(i)~(iii) onealsohas

(iv) ~‘i,’2+ 0�i = 0~,andP112 + G<_~=

In ~particular,this fourth conditionimplies 0~’°c ~. So we readily obtain that H and M0 must
satisfy

adH = adM0, on tensors, (C.11)
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sincewe know, from the previousanalysis,that ad11 — adM0 is a constantin everyrepresentation
[condition (ii)]. Therefore,we cansimplylook at thosesolutionsof the first problemwhich satisfy
(C.11) and check if condition (iv) is fully satisfiedor not. We get that the si(2) embeddings
allowing for an H-compatiblehalving areas follows:

A1: anysl (2) subalgebra.Thereareonly two solutionsfor H givenby settingin (C.2b): D(j) =

[.).±e(f) J I~with e(f) = 0/ ~ for a tensor/spinor,
B1: only the integralsl (2)‘s with H = M0,
C1: only the integralsl(2)’s,
D1: the integralsl(2)‘s, and thosefor which the fundamentalof D1 reducesinto spinorsandtwo

singlets,with H given by (C.l0).
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