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The covariant and Lagrangian formalisms



Covariant formalism

Maxwell’s equations read in the presence of an external source

+ charge conservation
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Maxwell’s equations become

+

or

+

with

Covariant formalism



From Lagrangian

Euler-Lagrange eq.

Covariant formalism



From Lagrangian

Euler-Lagrange eq.

Gauge invariance

invariant

only invariant if

gauge invariance current conservation 

Lagrangian formalism



Quantum fields

canonical conjugate momentum

Lagrangian formalism



Quantum fields

canonical conjugate momentum

(Fig: P. Coleman)

Lagrangian formalism
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The infrared catastrophe

Quantized EM field interacting with a classical source

Let us use the Lorentz gauge condition

Solution given by the Green’s function 

Specified by boundary conditions

with
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IR catastrophe – semilassical 

description

We are looking for a unitary transformation S

and

Thus the amplitude of a process to remain in the vacuum state 

after the interacting the classical source is:

And its probability is
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and

So we have the equation for the operator S

with the solution
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description

can be brought into the following form

where

positive

frequency part

negative

frequency part

and

The probability of finding the system with 0 photon in the out state is
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For n photons in the final state we need 

It can be shown that

Setting the average number of photons to

Poisson statistics
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IR catastrophe – semilassical 

description

Similar calculation for the average emitted energy by the source

yields:

Comparing to the average number of emitted photons:

As a consequence:

Infrared catastrophe



IR catastrophe – semilassical 

description

In other words, finding any finite number n soft photons in the final

state has zero probablity.

However, summing over all possible final state gives finite probability 

(coherent state)
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Truncating the phase space for considering photons with finite

frequency only gives us a finite number for average photon number

Removed part Observed number



IR catastrophe – semilassical 

description

Truncating the phase space for considering photons with finite

frequency only gives us a finite number for average photon number

Removed part Observed number

In fact, this happens performing physical measurements, since a realistic

detector has a finite resolution.

Probability of finding at least one photon in the detector range
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Quantum Electrodynamics

Let’s give dynamics to the charged particle (fermion)

Equation of motions for the fermion and photon fields

Dirac eq.

‘’Maxwell’’ eq.

The most important objects are the VEV of the products of field

Sometimes called correlators or n-point functions…

E.g. for n=2 it gives the propagator



Quantum Electrodynamics

Processes can be described by Feyman rule

(computed from the Lagrangian and its interactions)

In momentum space for QED there are the following rules

External fermion lines External photon lines Propagators & vertex

p

p

p

p

p

p

pa

pc

ac

aa



Quantum Electrodynamics

p

p’

k

k’

scattering

q

p-p’=q=k-k’

Energy-momentum

conservation

The scattering amplitude using the Feynman rules

An example
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Quantum Electrodynamics – IR 
catastrophe

Soft photon problem in QED (Bremsstrahlung)

p p

p’ p’

k

k

The differential cross section

For the Bremsstrahlung process behaves as an 

artificial photon mass

IR catastrophe

+

detector resolution



Quantum Electrodynamics – IR 
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Including quantum corrections

++ + …=



Quantum Electrodynamics – IR 
catastrophe

Including quantum corrections

++ + …=

The cross section in this case

IR catastrophe
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Quantum correted elastic cross section +



Quantum Electrodynamics – IR 
catastrophe

However, considering both yields a finite result

Soft photon emission (Bremsstrahlung)

Quantum correted elastic cross section

Neither they can be measured, however, their sum yields 

+

The probability that a scattering event occurs but the detector doesn’t detect a photon



Quantum Electrodynamics – IR 
catastrophe

There are still some issues

1. We only showed the cancellation for leading order

2. The derived probability can be negative

3. We would like to see the Poisson statistics 



Quantum Electrodynamics – IR 
catastrophe

There are still some issues

1. We only showed the cancellation for leading order

2. The derived probability can be negative

3. We would like to see the Poisson statistics 

1.-2. It can be shown that for all orders the correction

providing a positive cross section

3. It can be also shown that detecting the photon

number in a finite energy interval

Bloch-Nordsieck theorem real + virtual

soft process

hard 

process

(Fig: Peskin-Schroeder)
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Let us consider a Klein-Gordon (scalar) field

The equation of motion is the Klein-Gordon eq.

The propagator solves this for a Dirac-delta



Quantum Electrodynamics – Notes 
on the propagator

Let us consider a Klein-Gordon (scalar) field

The equation of motion is the Klein-Gordon eq.

The propagator solves this for a Dirac-delta

The solution then can be given as

classical propagation

only for quantum 

propagation



Quantum Electrodynamics – Notes 
on the propagator

During propagation the field can interact with a

classical potential / other particle

(Fig: W. Greiner)

In quantum mechanics and quantum field theory, the propagator gives the 

probability amplitude for a particle to travel from one place to another in a given 

time, or to travel with a certain energy and momentum.



Quantum Electrodynamics – Notes 
on the propagator

During propagation the field can interact with a

classical potential / other particle

More or less the same holds for the photon and the fermion fields

just replace KG eq. with Dirac eq. / Maxwell’s eq.

(Fig: W. Greiner)
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During propagation the field can interact with a

classical potential / other particle… or vacuum fluctuations
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Quantum Electrodynamics – Notes 
on the propagator

During propagation the field can interact with a

classical potential / other particle… or vacuum fluctuations

From perturbation theory of QED

p pp

p+k

p

k

The loop integral diverges when the the photon momentum               . 

An artifical mass can be introduced in order to avoid the infrared singularity. 
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The Bloch-Nordsieck model

We will approximate the infrared limit of the propagator with the following

assumption: in the infrared limit the spinor structure can be neglected and

the    matrices can be replaced by the four vector    , which can be

considered as the four-velocity of the fermion.  



The Bloch-Nordsieck model

We will approximate the infrared limit of the propagator with the following

assumption: in the infrared limit the spinor structure can be neglected and

the    matrices can be replaced by the four vector , which can be

considered as the four-velocity of the fermion.  

Low energy features:

• No antiparticles *

• No spin flips

• Fermionic scalar field

• Full fermion propagator can be given in a closed form

*



The Bloch-Nordsieck model

Since the BN model describes basically a scalar field theory, the 

Dirac eq. modifies and the Feynman propagator becomes 

equivalent to the retarded propagator

We would like to obtain the fermion propagator for the interacting system.



The Bloch-Nordsieck model

Since the BN model describes basically a scalar field theory, the 

Dirac eq. modifies and the Feynman propagator becomes 

equivalent to the retarded propagator

The one-loop self-energy 

We would like to obtain the fermion propagator for the interacting system.



The Bloch-Nordsieck model

Evaluating the integral using dimensional regularization yields the result

IR divergence 

UV divergence

UV divergence can be eliminated by the renormalization procedure, however,

the singularity at the mass-shell could cause much trouble. 

UV finite



The Bloch-Nordsieck model

Dyson series sums up the most relevant (?) part of the perturbation series 



The Bloch-Nordsieck model

Dyson series sums up the most relevant (?) part of the perturbation series 

It turns out that it is a geometric series

PT breaks down!



The Bloch-Nordsieck model

A better alternative for the summation of the perturbative series is needed.

In fact, we need a non-perturbative approach which can be achieved by the

Dyson-Schwinger equation.



The Bloch-Nordsieck model

A better alternative for the summation of the perturbative series is needed.

In fact, we need a non-perturbative approach which can be achieved by the

Dyson-Schwinger equation.

The Dyson-Schwinger equation of the fermion self energy includes the vertex

corrections, too.



The Bloch-Nordsieck model

In QED the Ward-identity connects the three point function and

the two point function (i.e. the vertex and the propagators)

In the case of the Bloch-Nordsieck model 

Hence

Inserting into the DS equation



The Bloch-Nordsieck model

The insertion yields

And using the Dyson eq. with wave function renormalization 

(+2 page of calculations: UV renormalization)



The Bloch-Nordsieck model

The insertion yields

And using the Dyson eq. with wave function renormalization 

(+2 page of calculations: UV renormalization)

The fully dressed Bloch-Nordsieck propagator



The Bloch-Nordsieck model

Comparing the exact and the 1-loop solution
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Comparing the exact and the 1-loop solution



The Bloch-Nordsieck model

By using the Bloch-Nordsieck propagator, it is straightforward

to derive the cancellation of infrared divergences

The method presented above is completely non-perturbative,

and it can be generalized to spinor QED in some extent.

This non-perturbative nature of this technique could be useful

in strong fields, where all attempts to perturbation theory

breaks down.



The Bloch-Nordsieck model at 
finite temperature



The Bloch-Nordsieck model at 
finite temperature

• The fermion is a hard probe of the system, it is not part of the thermal bath.

• The calculation were performed in real time formalism which gives a 2x2 structure

to the propagators, hence it makes things more complicated

• An exact solution can be given for the case of              .  Otherwise numeric was used.



The Bloch-Nordsieck model at 
finite temperature

T raises

Width spreads

The excitations

lifetime decreases



The Bloch-Nordsieck model at 
finite temperature

The bigger the coupling

the more unstable the

quasiparticle.  



The Bloch-Nordsieck model at 
finite temperature

Increasing u has the

effect of shrink the width

and hence increase the

lifetime, which is quite

intuitive if we think of u

as a three velocity.    
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Spectral function

Consider a general QFT with the field . 

Using the completeness relation of states:  

For the time ordered two point function

Källén-Lehmann

representation



It obeys the sum rule:

for fermions

for bosons

optional

Spectral function



one-particle state

Spectral function

For a free theory at



Spectral function

one-particle state

bound states

particle continuum

For an interacting theory at



Spectral function

In general at


