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The covariant and Lagrangian formalisms



"=\ Covariant formalism

attosecond

Maxwell’'s equations read in the presence of an external source
+ charge conservation

divE = p,
divB = 0
T4 divj+ 0ip =0
rotB—-—o0,E = ], ) tP
rotE + atB = 0

E = —grad® — 0;A

Introducing the scalar and vector potential
B = rotA



"=\ Covariant formalism

attosecond

Maxwell’s equations read in the presence of an external source + charge conservation
In (relativistically) covariant formalism

zh = (t,X) — (.CUO,CCl,ECQ,CUS) jﬂ = (paj) — (joajla.jzaj?))

a’a, = aj — a’ N = diag(l,—-1,—-1, 1)



"=\ Covariant formalism

attosecond

Maxwell’s equations read in the presence of an external source + charge conservation
In (relativistically) covariant formalism

zh = (t,X) — (ZCO,CCl,ZCQ,CUS) jﬂ = (paj) — (joajlajzaj?))

a’a, = aj — a’ N = diag(l,—-1,—-1, 1)

0 —E' —FE? —E3
E?l 0 B3 B2 Introducing a vector potential
E? B3 0 —B!
E3 —-B? B! 0

FH =
FHV = gAY — 9" AF

the field-strength tensor



gz Covariant formalism

Maxwell's equations become

(%F’“’ _ jv
divE = p, or
divB = 0, AR — 97(8, AV) = j*
I'OtB—atE — j, 9
‘ with O =0,0" = (0;)" — A
rotE +0,B = 0 : ()

+ divj+9p=0 + 9t =0




"=\ Covariant formalism

attosecond

From Lagrangian

| Euler-Lagrange eq.

EZ_Z P — g, AF ) (A" — 94(0,A") = j*
oL oL

gav g, any =Y



Il Lagrangian formalism

attosecond

From Lagrangian

| Euler-Lagrange eq.

L=—=F, F" —j, At ) A" — 9" (9,A") = j*

4

or or
gav g, any =Y

Gauge invariance

AR (z) = AM(z) + 0
OA" — 0" (0, A") = 5 1 > invariant

L — 1 WM — g AR > only invariant if

! Ju0" e = 0"(j"¢) ie. 975, =0

gauge invariance <—— current conservation




=l Lagrangian formalism

Quantum fields

a3 1 : ——r
o(x) :/( P (ape_zp“m” +a;§e’p“$ )

2m)3 \/2E,
e cal con
= 8(80gb(x)) canonicCa Conjugate momentum

ap, at ]+ = (2m)°6% (p — p')

b(t,x), m(t,x)]+ =i (x — x')

(t,x), (¢, %)+ = [7(t,x), 7(t,x")]+ =0



Il Lagrangian formalism

attosecond

Quantum fields

d’ 1 . .
o) - | 2 (ape ™" +afeme”)

2m)3 \/2E,
(z) oL ical jugat t !
vin p—
9(00(7)) canonical conjugate momentum )

ap, at ]+ = (2m)°6% (p — p')

(t, %), 7(t, X))« = i6°(x — x')

(t,x), (¢, %)+ = [7(t,x), 7(t,x")]+ =0

Quantum string.

(Fig: P. Coleman)
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IR catastrophe — semilassical description



gz IR catastrophe —semilassical

description

The infrared catastrophe
Quantized EM field interacting with a classical source

Let us use the Lorentz gauge condition

A" — au(aVAV) _ j“ 0, A" =0 > AR — j”




gz IR catastrophe —semilassical

description

The infrared catastrophe
Quantized EM field interacting with a classical source

Let us use the Lorentz gauge condition

A" — au(aVAV) _ j“’ 0, A" =0 > AR — j”

Solution given by the Green’s function

A(z) = AL + / Iy Gz — )i ()



=l IR catastrophe —semilassical

attosecon

description

The infrared catastrophe
Quantized EM field interacting with a classical source

Let us use the Lorentz gauge condition

A" — au(aVAV) _ ij 0, A" =0 > AN — j”

Solution given by the Green’s function
A'(a) = A+ [ alyGlo— )i
Specified by boundary conditions
At (x) = A”x+fd4G x — )"
( ) zn( ) Y Tet( y).] (y) 1_1>m A”(JE) _ Agn/(ﬂi‘),
xTo——00

= (@) + [ @y Guanlo ) lim Ah(z) = A% (o)

with

ro—00



gz IR catastrophe —semilassical

description

We are looking for a unitary transformation S

Al =S5"1AR S

out

and |0ut> =5 |in>



I= IR catastrophe —semilassical

attosecon d

description

We are looking for a unitary transformation S

Al =S5"1AR S

out
and |0ut> =S |in>

Thus the amplitude of a process to remain in the vacuum state
after the interacting the classical source is:

(out 0|in 0) = (in 0| .S |in 0) = (out 0| .S |out 0)

And its probability is
po = |(out 0]in 0)*



gz IR catastrophe —semilassical
description




gz IR catastrophe —semilassical
description

—i[ A5, (2), Af (y)]

So we have the equation for the operator S

STIAL (@) = Al (o) — i [ d'ylAl (2, Ain(u)i ()



gz IR catastrophe —semilassical
description

So we have the equation for the operator S

STIAL (@) = Al (o) — i [ d'ylAl (2, Ain(u)i ()
with the solution

—i [ dizAip(x)j(x)
— e s
S e Be ™ = n;@ LIA[A,[...[A, B]]..]]

n!



gz IR catastrophe —semilassical

description

S = e~/ d'wAin(2)j(@) can pe brought into the following form
S — 6—7}fd4a:A§:)(a:)j(a:)€—ifd4a:A( )(3:‘)] ~5J m(|Jl(k)|2+|J2(k)|2)

where Al (z) = A4 (@) + A7 @) and Flii()|(k) = Ji(k) i=1,2

/

positive negative
frequency part frequency part



I= IR catastrophe —semilassical

attosecond

description

S = e~/ d'wAin(2)j(@) can pe brought into the following form
S — e—ifd4a:A§:)(a:)j(a:)€—ifd4a:A( )(3:‘)] ~5J m(|Jl(k)|2+|J2(k)|2)

where Al (z) = A4 (@) + A7 @) and Flii()|(k) = Ji(k) i=1,2

/

positive negative
frequency part frequency part

The probability of finding the system with O photon in the out state is

3
po = |(out 0]in 0)|* = [(in 0] S'|in 0)|* = e — | 5ty (T (0) P+ J2(k)[?)



gz IR catastrophe —semilassical

description

For n photons in the final state we need P, = | (01113 n\in 0> ‘2

It can be shown that

1 d3q 2 N S e (| (k) P (k)]
- (2m)3
po= || oo (1@ + @) | e



I= IR catastrophe —semilassical

attosecon d

description

For n photons in the final state we need P, = | (01113 n\in 0> ‘2

It can be shown that

1 d3q 2 N S e (| (k) P (k)]
- (2m)3
po= || oo (1@ + @) | e

. _ d°k 2 2
Setting the average number of photonsto 7 = / 210 2n)? (|J1(k’)\ + [J2(k)| )

Dy = —€ Poisson statistics




gz IR catastrophe —semilassical

description

Similar calculation for the average emitted energy by the source
yields:

Y E oy




gz IR catastrophe —semilassical

description

Similar calculation for the average emitted energy by the source
yields:

Y E oy

Comparing to the average number of emitted photons:

dE = hk'dn
o= . _ . . dE
if lim £ = lim dFEl < oo = lim n = lim — = 0
KO0 k00 KO0 k-0 | hkO

Infrared catastrophe



I= IR catastrophe —semilassical

attosecon d

description

Similar calculation for the average emitted energy by the source
yields:

Y E oy

Comparing to the average number of emitted photons:

dE = hk'dn
o= . _ . . dE
if lim £ = lim dFEl < oo = lim n = lim — = 0
KO0 k00 KO0 k-0 | hkO

Infrared catastrophe
no -

- lim p, = lim |{out n|in 0)|* = lim —e™ ™ =0
As a consequence:  lim p, = lim || in 0)[" = lim —



I= IR catastrophe —semilassical

attosecond

description

In other words, finding any finite number n soft photons in the final
state has zero probablity.

0.15}
0.10f

0.05f

0.00 I



I= IR catastrophe —semilassical

attosecond

description

Truncating the phase space for considering photons with finite
frequency only gives us a finite number for average photon number

Removed part  Observed number

o= lim rn:fds—’“ (11 () + [ (k)P) < oo
© kO —£C, >0 2k0(27)3 \I! ’



I= IR catastrophe —semilassical

attosecond

description

Truncating the phase space for considering photons with finite
frequency only gives us a finite number for average photon number

Removed part  Observed number

o= lim fn:fds—’“ (11 () + [ (k)P) < oo
© kO —£C, >0 2k0(27)3 \I! ’

In fact, this happens performing physical measurements, since a realistic
detector has a finite resolution.

Probability of finding at least one photon in the detector range po =1 — e "©
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Quantum Electrodynamics



[a=l Quantum Electrodynamics

Let’s give dynamics to the charged particle (fermion)

Lopp = (il —mp — B P — ieln A,



sl Quantum Electrodynamics

attosecond

Let’s give dynamics to the charged particle (fermion)
_ 1 L

Lopp = $(id = m)p — L Fu P — iehy A,

Equation of motions for the fermion and photon fields

(id —eAd —m)y(x) =0 Dirac eq.

0, F" = eypytep = j*  “Maxwell” eq.



sl Quantum Electrodynamics

attosecond

Let’s give dynamics to the charged particle (fermion)
_ 1 L

Lopp = Uil — m)y = 1 Fu ™ — ey pA,

Equation of motions for the fermion and photon fields

(id —eAd —m)y(x) =0 Dirac eq.

0, F" = eypytep = j*  “Maxwell” eq.

The most important objects are the VEV of the products of field
Sometimes called correlators or n-point functions...

O] Td1(x1), P1(22), .05 Dn(T0) [0)
E.g. for n=2 it gives the propagator

Gr(z —y) =—i(0|To(x),d(y) |0) = —i (0] [0(z° — y*)d(2)(y) — (3" — 2°)o(y)d(x)] |0)



sl Quantum Electrodynamics

attosecond

Processes can be described by Feyman rule
(computed from the Lagrangian and its interactions)

In momentum space for QED there are the following rules

External fermion lines  External photon lines Propagators & vertex
N v > ip+m)
pa P, p? — m? + ie
€
D ‘f\_/\/\, ,u(p)
@ N> T . »
P AVAVAVAVAVIRRL
— N 2 .
0 M/\/\/\/i €, (p) H vooq°+ e
ac —>—Q v®(p)
L 8 —iey”
pC +Q u’®(p)



[a=l Quantum Electrodynamics

An example

P "
Energy-momentum
_ _ q .
e —e conservation
scattering , ,
p-p'=q=k-k
P Kk
The scattering amplitude using the Feynman rules
2 —n""
. . — / /
iM = (—tie) u(p’ )y u(p) u(k')y" u(k)
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Quantum Electrodynamics —
IR catastrophe



I Quantum Electrodynamics - IR

catastrophe

Soft photon problem in QED (Bremsstrahlung)

p’ K P
here k is a soft photon
radiation
k + ,
k| < [p—p|



=l Quantum Electrodynamics - IR

attosecon

catastrophe

Soft photon problem in QED (Bremsstrahlung)

p’ K - p
here k is a soft photon
) . radiation
k| < |p—p/|
p p
M = —iea(s) ( Mol p = D) e ()
+7"e, (k) (;¢+4]—€)k+ Y Mo(p' + k p)) (p)

Mo(p',p—k) = Mo(p' + k,p) = Mo(p', p)



=l Quantum Electrodynamics - IR

attosecon

catastrophe

Soft photon problem in QED (Bremsstrahlung)

P kK p
The differential cross section
Kk + do
o [M|?
dQ
P P
For the Bremsstrahlung process (o behaves as an
artificial photon mass
do do o —q° E? ) p—0 ‘
s+ = (), + 2L () o] -

5 IR catastrophe

2 _ (12 . o=
g~ = (p'—p)” K, detector resolution e



I Quantum Electrodynamics - IR

catastrophe

Including quantum corrections



I=@ Quantum Electrodynamics — IR

attosecon d

catastrophe

Including quantum corrections

The cross section in this case

— 0
%(p_}p') N (%)0[1‘ %10g(_m—qj)log(_u—q; +0(a2)] . > 00
IR catastrophe




I Quantum Electrodynamics - IR

catastrophe

However, considering both yields a finite result

Soft photon emission (Bremsstrahlung)
2 2

do do Q —q E
=+ =(gg),| +Fle(57)los(—) + 0]
Quantum correted elastic cross section

2 2

3—8(19 —p) = (3—8)0[1 - glog(%) log(;_%) * 0(02)]

T

N

/



I=@ Quantum Electrodynamics — IR

attosecond

catastrophe

However, considering both yields a finite result

Soft photon emission (Bremsstrahlung)
do do o —q? E? N\
- )ol * 7 oe(5r) os( ) + ()
dQ(p P+a) = (dﬂ)o[ +7r0g m2 ) 8 12 +0(’)
Quantum correted elastic cross section
2 2

do , do Q —q q

o) = (55) [1- Slog( =5 ) log( =+ ) + O(a?)]
dﬂ(p P) (dQ)o[ T e\ ) 08 2 +0(e) Y,
Neither they can be measured, however, their sum yields

do do

do
PPt TP k<) = (dn)measured

dS)

() s = (0)u 1~ 5 108 i) 08 ) + 0]

The probability that a scattering event occurs but the detector doesn’t detect a photon




I Quantum Electrodynamics - IR

catastrophe

There are still some iIssues

1. We only showed the cancellation for leading order
2. The derived probability can be negative
3. We would like to see the Poisson statistics



I=@ Quantum Electrodynamics — IR

attosecond

catastrophe

There are still some iIssues

1. We only showed the cancellation for leading order
2. The derived probability can be negative
3. We would like to see the Poisson statistics

1.-2. It can be shown that for all orders the correction
providing a positive cross section

(%), = (52), ) 1os( )]
dﬂ meas._ dQ m g EE
Bloch-Nordsieck theorem

real + virtual
soft process W

exp [_ﬁ log(

3. It can be also shown that detecting the photon
number in a finite energy interval

1 —qr2
— log
n! \ 7 m2

Pn~with F_ < E< FE,) =

, hard
process




Quantum Electrodynamics —
Notes on the propagtor



a1 Quantum Electrodynamics — Notes

on the propagator

Let us consider a Klein-Gordon (scalar) field
The equation of motion is the Klein-Gordon eq,.

(O +m?)¢(z) = j(x)
The propagator solves this for a Dirac-delta
(O4 m*)G(z,2') = §(x — 2')



I Quantum Electrodynamics — Notes

attosecon d

on the propagator

Let us consider a Klein-Gordon (scalar) field
The equation of motion is the Klein-Gordon eq,.

(O +m?)¢(z) = j(x)
The propagator solves this for a Dirac-delta
(O4 m*)G(z,2') = §(x — 2')

The solution then can be given as ~ ¢(z) = ¢o(x) + /d% Gz —2')j(z")

—ipT

1 e

G = — d'
ret/adv(’r) (271_)4 / p(po + i6)2 _ p2 — m?2

1 4 e P
Grr) = - (27)4 /d p(p% — p?) —m? +ie

classical propagation

only for quantum
propagation



I Quantum Electrodynamics — Notes

attosecond

on the propagator

During propagation the field can interact with a
classical potential / other particle

t} (a) (', 1) th (v (',t) th (d) (z', 1)
(x2,12)
Go(=',t52,1) V(z1,t)
(@1,%) (x1,11)
(z,1) (z,1) (x,1)

x
(Fig: W. Greiner)

8y
&8y

G(x',t';x,1) =Go(x',t'; x,1)
1
+ /d3X1 At Go(x', 1’5 x, tl)ﬁv(xla 11)Go(x1,11;x,1)

In quantum mechanics and quantum field theory, the propagator gives the
probability amplitude for a particle to travel from one place to another in a given
time, or to travel with a certain energy and momentum.



I Quantum Electrodynamics — Notes

attosecond

on the propagator

During propagation the field can interact with a
classical potential / other particle

t} (a) (', 1) th (v (',t) th (d) (z', 1)

(x2,12)
Gﬂ(m’:t';m:t) V(wlytl)

@1,1) (x1,1t1)
(x,1t) (z,t) (z,1)
p T

(Fig: W. Greiner)

]

More or less the same holds for the photon and the fermion fields
just replace KG eq. with Dirac eq. / Maxwell’s eq.

i(p +m)

p? — m? + i€

OF =

—inHV

Gl =
E g2 4 e




a1 Quantum Electrodynamics — Notes

on the propagator

During propagation the field can interact with a
classical potential / other particle... or vacuum fluctuations

t} (a) (', t") From perturbation theory of QED
Kk
Gh(:l:’,t’;m?t) P P P (T‘\/]z P
- = : + « « « T o
p+k
(z,t)

8y



I Quantum Electrodynamics — Notes

attosecond

on the propagator

During propagation the field can interact with a
classical potential / other particle... or vacuum fluctuations

t} (a) (', t") From perturbation theory of QED
Kk
Ga(z',t'; 2, 1) P P P (TNLL P
- = : + « « « T o
p+k
(z,t)
z

x?(\‘%ﬁ‘ = (—ie)Q/ Ak, i(k+p+m) ,},y(_i M )

ent " (k+p)?—m? k? — p?

The loop integral diverges when the the photon momentum &£ — () .

An artifical mass M can be introduced in order to avoid the infrared singularity.
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The Bloch-Nordsieck model



"= The Bloch-Nordsieck model

attosecond

We will approximate the infrared limit of the propagator with the following
assumption: in the infrared limit the spinor structure can be neglected and
the 7" matrices can be replaced by the four vector «* which can be
considered as the four-velocity of the fermion.

1

Loep = (i —m)y — 4 u FHY — ielB’Y‘u@bAu

AP — u,ut =1

1
L =t (iuldy, —m — eu A, ) — M



"= The Bloch-Nordsieck model

attosecond

We will approximate the infrared limit of the propagator with the following
assumption: in the infrared limit the spinor structure can be neglected and
theY"matrices can be replaced by the four vector«*, which can be
considered as the four-velocity of the fermion.

_ 1 -
Larp = (i — m) - L Fu P — ielyi,
f)/“ — u'u UM’U;'U' =1

1
L =t (iuldy, —m — eu A, ) — M

Low energy features:
* No antiparticles * X
* No spin flips

* Fermionic scalar field

 Full fermion propagator can be given in a closed form



"= The Bloch-Nordsieck model

attosecond

Since the BN model describes basically a scalar field theory, the
Dirac eq. modifies and the Feynman propagator becomes
equivalent to the retarded propagator

("9, — m)Go(x) = b(x) - Golp) =

u,pt —m + 1€

We would like to obtain the fermion propagator for the interacting system.



"= The Bloch-Nordsieck model

attosecond

Since the BN model describes basically a scalar field theory, the
Dirac eq. modifies and the Feynman propagator becomes
equivalent to the retarded propagator

("9, — m)Go(x) = b(x) - Golp) =

u,pt —m + 1€

We would like to obtain the fermion propagator for the interacting system.
k

The one-loop self-energy S\Wﬁz

p-K

4
gl m) = (ie)? [ 557 iGoo(k)iG(p ~ )

5 2/ dk 1 1
—e“u : :
(2m)* k2 +ie po — ko — m + i




"= The Bloch-Nordsieck model

attosecond

Evaluating the integral using dimensional regularization yields the result

&, oo UV divergence

5, ™ o0 IR divergence

« m — po
= —(pop—m) |—1In
T H

E1loop (pOa m)

UV divergence can be eliminated by the renormalization procedure, however,
the singularity at the mass-shell could cause much trouble.

m — pPo
L4

TEN E

1loop (pOa m) - - - UV finite

(po —m)In



"= The Bloch-Nordsieck model

attosecond

Dyson series sums up the most relevant (?) part of the perturbation series

$ = —_———— + + +---
-~
/ ~
/ ~
/
/

—
—
—
—
T
T~

/ -1 T~

/ ™~ -

/ T~
sy s -



"= The Bloch-Nordsieck model

attosecond

Dyson series sums up the most relevant (?) part of the perturbation series

=‘==+
msﬂz SQ“%

1
It turns out that it is a geometric series  Go = ——
0
1 1 1 m—p
G(po) = - - 7 08 <!
po —m — X(p) po—m %y, M Po Q M
0 7

PT breaks down!



"= The Bloch-Nordsieck model

attosecond

A better alternative for the summation of the perturbative series is needed.
In fact, we need a non-perturbative approach which can be achieved by the
Dyson-Schwinger equation.



"= The Bloch-Nordsieck model

attosecond

A better alternative for the summation of the perturbative series is needed.
In fact, we need a non-perturbative approach which can be achieved by the
Dyson-Schwinger equation.

The Dyson-Schwinger equation of the fermion self energy includes the vertex
corrections, too.

4
Y(p) = —‘iff?/ (i:; G(k)G(p — k)u, L (k;p — k., p)




"= The Bloch-Nordsieck model

attosecond

In QED the Ward-identity connects the three point function and
the two point function (i.e. the vertex and the propagators)

kD (ksp—k,p) =G H(p) — G H(p — k)
In the case of the Bloch-Nordsieck model T'*(k;p — k,p) = u*T'(k;p — k,p)

G l(p) -G tp—k)

Hence TI'(k;p—k,p) = .
0

Inserting into the DS equation




= The Bloch-Nordsieck model

The insertion yields

4
St m) = —ie? [ 55 g0 ) (671 0) - 6 - )

And using the Dyson eq. with wave function renormalization

G (p) = Z(po — m) — =(p)

(+2 page of calculations: UV renormalization)



"= The Bloch-Nordsieck model

attosecond

The insertion yields

4
St m) = —ie? [ 55 g0 ) (671 0) - 6 - )

And using the Dyson eq. with wave function renormalization

G (p) = Z(po — m) — =(p)

(+2 page of calculations: UV renormalization)

The fully dressed Bloch-Nordsieck propagator

C C
g(p) _ . e—oz/w log(up—m)

(up —m)1+e/™  (up —m)




"= The Bloch-Nordsieck model

attosecond

Comparing the exact and the 1-loop solution

100 ¢

10g§ 10}

0.1+

0.05 0.10 0.50 1.00 5.00 10.00



gpggsgj The Bloch-Nordsieck model

Comparing the exact and the 1-loop solution

10° |
; B EXACT

® 2PT

1000 ¢

log G

10 -

0.1F

0.05 0.10 po 0.50 1.00 5.00 10.00



=l The Bloch-Nordsieck model

attosecon

By using the Bloch-Nordsieck propagator, it is straightforward
to derive the cancellation of infrared divergences
2 2

(e = (@) ™ oo 7108 (G ) 08(F5)

The method presented above is completely non-perturbative,
and it can be generalized to spinor QED in some extent.

This non-perturbative nature of this technique could be useful
In strong fields, where all attempts to perturbation theory
breaks down.




=l The Bloch-Nordsieck model at

finite temperature

Let's go to T # O




=8 The Bloch-Nordsieck model at

attosecond

finite temperature

« The fermion is a hard probe of the system, it is not part of the thermal bath.

ny(po) =

* The calculation were performed in real time formalism which gives a 2x2 structure
to the propagators, hence it makes things more complicated

iGap(x) = (TcO,s(x) 02(0»

« An exact solution can be given for the case of % = 0. Otherwise numeric was used.



=l The Bloch-Nordsieck model at

finite temperature

Naﬂsina:eﬁ"”/2 1

o(w) = cosh(fw) — cos a o Bw 2> W=hkomm
r (1 +—+ z)
2T 2T
w | T =0.1-0.8
p(w) 403 T raises
I'=01 ; a=0.5 l
J! Width spreads

l

The excitations
lifetime decreases
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The Bloch-Nordsieck model at
finite temperature

o(w) N, B sin o ePv/? 1
w - ’ p— R
0 cosh(fw) — cos a o Buw 5 w=pyg—m
D1+ —+i—
27 27
W 250: _
Y 0.1 /\ a=01-08 The bigger the coupling
o= :
bl T — (.8 the more unstable the

guasiparticle.



=8 The Bloch-Nordsieck model at

attosecond

finite temperature

5(w) Naﬂsina:eﬁ"”/2 1
w) = ’ — _
0 cosh(fw) — cos a o Bw 5 w=pyg—m
14+ —+4+:i—
2 21
p(w) ul =6 s a=0.5 Increasing u has the
T — effect of shrink the width
A /=156 and hence increase the
ul =1.0—

lifetime, which is quite
intuitive if we think of u
as a three velocity.
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I=l Spectral function

attosecond

Consider a general QFT with the fiefd )

Using the completeness relation of states:

d>p 1
ORI = [ (55 5 3y O Al

Ep =/p? +m3

O)8)10) =3 [ %)4 i 060 o)

For the time ordered two point function (0]p(x)|Ap) = (0]6(0)|Ng) e~ P*

oo
dw?

21

p’=Ep

(0[Tp(x)(y)|0) = p(W)Gr(r — y;w?)

0

Kallén-Lehmann

[ p(w?) = 2}\:5(‘*’2 —m5)|(0]$(0)[Ao)|? } representation




a1\l Spectral function

It obeys the sum rule:

d 2
2&,0 =1 for fermions

s
d 2
Q&wzp =1 for bosons

s

optional
pw?) = 2mb(w? —m3)Z /

+ (bound states for w? < 4m?)

+ (multiparticle states for w? > 4m?)



I=l Spectral function

attosecond

For afreetheoryat T' =0

p(w?)

A

one-particle state




I=l Spectral function

attosecond

For an interacting theory at 17" = 0

2 :
p(w?) A one-patrticle state

bound states

particle continuum




a1\l Spectral function

In generalatl” > 0




