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1. Overview

@ The conical function is a o F1-specialization that can be used to
solve the Schrédinger equation for the (reduced) N = 2 case of
the repulsive and attractive nonrelativistic integrable
Calogero-Moser N-particle system. Its relativistic generalization
serves the same purpose for the relativistic version of this
integrable quantum system.

@ To date, the only way to prove orthogonality and completeness of
the associated relativistic eigenfunction transform involves
scattering theory. We therefore begin by outlining how this works
in the nonrelativistic case.

@ After summarizing the Hilbert space aspects of the relativistic
conical function, we sketch further features. This includes product
formulas it satisfies, and how it gives rise to an
SL(2,7Z)-representation and a solution to quantum KZ equations.
To conclude, we add some remarks on Cherednik’s DAHA in the
A setting at issue.
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2. Nonrelativistic 1D potential scattering
@ We consider Schrddinger operators of the form (A = 1)

Hy = —d?/dx?, H = —d?/dx?® + V(x),

with V(x) real-valued.
@ Two ‘position space’ Hilbert spaces occur:

Hs = L2((0,00),dx), Hg = L3((—00,00), dx).

@ With suitable assumptions on V(x), we recall the connection of

the wave operators
W:I: — lim eil‘H —itHo
t—+oo ’

e

from time-dependent scattering theory with time-independent
scattering theory in terms of (improper) eigenfunctions

HV = p?V¥, p>0,

with unitary asymptotics.
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2A. Scattering on the half-line

@ Assume V(x) is smooth on (0, oc), vanishes quickly for x — oo,
and satisfies

V(x) -+, x—=0, V(x)<0, x>0.

@ With Dirichlet b. c. at x = 0, the interacting and free evolutions
exp(—itH) and exp(—itHp) on #s can be compared via the wave
operators W... They are unitary, with the scattering encoded in
the (position space) S-operator

S=WiW_.

@ This can be made more explicit by using the so-called incoming
wave functions

HV =p?V, p>0, V(x,p)~u(p)e™ —e ™ x— oo,
with u(p) =: Ss(p) the unitary S-matrix (|Ss(p)| = 1).
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@ The sine transform

(RN =15 [ do (67— e )f(p). Fe C((0.0)).
0
diagonalizes Hy on #s = L?((0, ), dp) (‘momentum space’):
HoFo = Fop>.
@ Letting

(FN0 =/ | apwixpip). 1 C((0.00))

we get more generally a unitary operator from % to s such that
HF = Fp?.
@ We also have
F=W_F, F& =W,F, (50 (p)=Ss(p)f(p),

with § = F§SFo the momentum space scattering operator.
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2B. Scattering on the line

@ Assume V(x) is smooth, even, vanishes quickly for |x| — oo, and
satisfies V’(x) > 0 for x > 0. Such V have finitely many bound
states, i. e.,

H\Ug:Eg\Ug, Eg<0, W@EHd:LZ(R,dX), EZO,...,L—‘I.

@ The wave operators W exist and are isometric, with range equal
to the orthogonal complement of the bound states. Thus, the
position space S-operator S = W} W_ is unitary.

@ A corresponding unitary S-matrix

s (o= [ fP) r(p)
Sd(p) = ( I’(p) t(p) >7 p > 0,

on the momentum space 4 = L2((0, o), dp)? arises as follows.
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@ Diagonalize Hy and H via eigenfunction transforms

v (Xap) f+(p)
o= [0 (S0 ) (1)
Folx) Vo (—xp) )\ 7(p)
with
HioyV (o) = PV o).
@ For Hy choose Wy (x, p) = exp(ixp), so Fo amounts to the Fourier
transform, with f € L2(R, dp) yielding (f,,f_) € 4 via

fr(p) = 1(p), f-(p)=—1(-p), p>0.

@ For H choose the incoming wave function V(x, p):

t(p)e™P, X — 00,
Hwv :pzwv p>0, V(x,p)~ { e(lfp)_ r(p)e—ixp X — —00.

(So W(x,p)/t(p) is a Jost function.)
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@ Once more, we get H)F(0) = F(o)P? and

- N N f
F=W._Fo, F& = W, Fo. (31)(p) = 8a(p) ( e ) |
so that the scattering is encoded in the momentum space

scattering operator .
8= F;SF.

@ Hence H is diagonalized as multiplication by
(p?, p?) @ (Eo, ..., E._1) on Hy @ Span(bound states).

@ N. B. In both cases, the eigenfunction transforms yield a concrete
realization of the spectral theorem. Scattering theory can be
avoided by using the so-called Weyl/Titchmarsh/Kodaira
approaches.
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3. The special potentials at issue

@ We consider the two potentials on the half-line and the line leading
to the conical function, namely,

Vs(x) = g(g — 1)/sinh?(x), x e (0,00), g>1,

and
Vy(x) = —g(g — 1)/ cosh?(x), xeR, g>1.

@ Here, the suffix s stands for ‘same’, and d for ‘different’. These
potentials encode the interaction between two charged particles in
their center-of-mass frame, with repulsion between same charges
and attraction between different charges (as in electrodynamics).

@ N. B. Vy(x) arises from V;s(x) by the analytic continuations
X — X +ir/2.
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3A. The repulsive case

@ The above incoming wave function W(x, p) involves the so-called
conical function:

(sinh x)9-1/2

1/2—g _
P (coshx) = 551721 (g + 1/2)

ip—1/2

Yue(9: X, P),

Yur(9: X, P) = 2F1 (9 + 10)/2, (9 — i) /2,9 + 1/2; — sinh?(x)).
@ These functions admit a variety of integral representations.
Probably the simplest is

' B 2r(2g) /°° cos(yp)
U9 = Gar(g £ ipr(g — p) Jo Y (coshy + coshx)e

which entails in particular

Yne(1; X, p) = sin(xp)/psinh x.
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@ Setting
(2sinh x)9T(9)I (g — ip)
r29)r(-ip)
__2(sinhx)9r(9) [ cos(yp)
 T(—ip)F(g+ip) Jo (coshy + cosh x)9’
yields the announced incoming wave function:

V(x,p) =—

Q;Z)nr(g; X, p)

V(x,p) ~ u(p)e™? — e, x — o,

where r(ip)r (9 — ip)
“P) = i) (g + o)

@ N. B. For g = 1 this gives the free solution

W(x,p) = e”P — e
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3B. The attractive case

@ For g € (L, L+ 1] there are L bound states
W,(x) = (cosh x)'=9P,(isinh x),
HY, =EV, E,=—(g—(—1)? ¢=0,...,L—1,
with P,(t) Gegenbauer polynomials of degree ¢, satisfying
Po(—1) = (=) Pe(t).

@ The solution space to HV = p?V¥, p > 0, is spanned by the two
functions
(cosh x)9¢yn,(g; x + im/2, p).

Therefore the desired incoming wave function W(x, p) is
characterized by two p-dependent coefficients.
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@ Specifically, it reads

(2cosh x)9T(9)r (9 — ip)
2r(29)r(—ip) sinh(irg — 7p)

x Y sexp(d(irg — wp)/2)¢ni(g; X + bim /2, p)
d=+,—

tip)e™,  x— oo,
e*P —r(p)e ™, x — —o0,

V(x,p) =

with

sinh(7p)

B _ sinh(img)
~ sinh(irg — 7p) ulp). r(p)

tp) ~ sinh(irg — 7p)

u(p)-

@ N.B.Forg=1,2,3,..., we get r(p) = 0. Moreover, g = 1 yields
the free solution

W(x,p) = e*P.
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4. The relativistic generalization

@ The relativistic Calogero-Moser system is encoded in N
commuting Hamiltonians that are AAOs (analytic difference
operators):

Z H f( e "B mei Oxm H fo(Xm — Xn),

|[l|=k mel mel
ngl n&l

where k=1,...,N, 8> 0,and

f(x)? = sinh(u(x £ i3g)/2))/ sinh(ux/2).

@ Physical picture: 5 = 1/mc and c =light speed;
H = mc?[H;(x) + H;(—x)], P = mc[H;(x) — H;(—x)], and
B=-m}’;, x;, are space-time translation and boost generators,
representing the Lie algebra of the Poincaré group in 2D:

[H,P] =0, [H,B]=ihP, [P,B]=ihc 2H.
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4A. The (reduced) N = 2 repulsive case

@ To date no general Hilbert space theory for AAOs exists. Worse
yet, the solutions to a Schrédinger equation of the form

f(X)V(x +is, p) + g(x)¥(x — is, p) = 2 cosh(sp)¥V(x, p),

with shift parameter s > 0 form an infinite-dimensional vector
space whenever one nonzero solution V(x, p) exists.
@ Example: The free case f(x) = g(x) = 1. Just multiply the

obvious solution exp(ixp) by any function m(x, p) that has
is-periodicity in x to get another solution.

@ Certain special AAOs, however, have been promoted to
self-adjoint Hilbert space operators. This hinges on the existence
of special solutions to the Schrédinger equation that give rise to a
unitary eigenfunction transform.
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@ For the reduced N = 2 case at hand, this transform involves the
relativistic conical function. This conical function generalization
has many distinct integral representations. The integrands are
built from the hyperbolic gamma function G(a;, a—; z), which is a
generalization of the (rational) gamma function I'(z).

@ In the present setting, a. can be viewed as length scales:
a, = 27/u, (imaginary period/interaction length),

a_ = h/mc, (shift step size/Compton wave length).

@ From now on, we use the notation
c5(2) = cosh(nz/as), ss(z) = sinh(rz/as), es(z) = ™%/,

where § = +, —; also, we define the average

a=(a;+a.)/2
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@ The hyperbolic gamma function G(z) can be defined as the
meromorphic solution to one of the first order AAEs

G(z + ias/2)

G(Z — i35/2)

which is uniquely determined by requiring G(0) = 1 and
‘minimality’; the second AAE is then satisfied as well.
@ In the strip |Im z| < a it has the integral representation

B . [ dy sin2yz _ Z
G(2) = exp (’/0 y (23inh(a+y) sinh(a-y) a+a_y))'

This entails absence of zeros and poles in this strip and the
properties

=2c_45(2), 60 =+,—, ay,a- >0,

G(a_,ay;z) = G(a+,a-;z), (modular invariance),

G(—z)=1/G(z), (reflection equation),

G(2) = G(-2).
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@ The simplest and most revealing representation of the relativistic
conical function is given by

1 G(2ib— ia)
R(ay,a_,b;x,y) = \/;G(ib— ia)?

G(z+d6(x—y)/2—ib/2)
/dz H Gz +(x+y)/2+bj2)

Here, b and y are the coupllng constant and spectral parameter,
related to the previous parameters by

b=pg(=g/me), y=pp/p.
@ From this one reads off evenness in x and y and the properties
R(a-,as,b;x,y) =R(as,a—,b; x,y), (modular invariance),

R(as,a—, by, x) =R(as,a_,b; x,y), (self — duality).
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@ The R-function is meromorphic for b, x, y € C and
Rea;,Rea_ > 0. It satisfies the four AAEs

As(X)R(x,y) = 2¢5(Y)R(X,¥), As(Y)R(X,y) = 2¢;(X)R(x, ),
Sa(Z + ib)
As(z2) = ————
5(2) E
where 6 = +, —.
@ The AAO A (x) is related to the above (reduced) N =2

Hamiltonian H by a similarity transformation involving the
generalized Harish-Chandra c-function

c(z) = G(z+ia—ib)/G(z + ia).
@ Introducing the weight and scattering functions
w(z) =1/c(2)c(-2), u(z)=—c(2)/c(-2),
(with w(z) having a double zero for z = 0), this relation is given by

H = CS'H,(x), Hi(z)=w(z)'?AL(z)w(z)""/2.

exp(ia_sd/dz) + (z — —2),
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@ The function

G(ib — ia) w(x)"/?
G(2ib—ia) c(—y)

satisfies H (X)V(x, y) = 2¢+(y)V¥(x, y) and

\U(va)E_ R(Xay)v

V(x,y) ~ u(y)exp(itxy/ara-) —exp(—irxy/ara-), X — .
@ Setting

Ho +(x) = exp(ia+d/dx) + exp(—ia+d/dx),

Wo(x,y) = explirxy/a a_) — exp(~irxy/a.a_),

one clearly gets Hy 1 (x)WVo(X,y) = 2¢+(¥)Vo(X,y).

@ The sine transform F, with kernel (2a, a_)~1/2W,(x, y) can now
be used to reinterpret the AAOs Hj +(x) as self-adjoint operators
on Hs = L2((0, o0), dx), namely as pullbacks of the self-adjoint
operators of multiplication by 2c.(y) on #s = L2((0, ), dy) under
the unitary Fo.
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@ Provided b € [0, 23], the transform F with kernel
(2a,a_)""/2W(x, y) yields a unitary operator Hs — Hs. (It equals
Fo for b= a..) The AAOs Hy(x) can then be viewed as
commuting self-adjoint operators on Hs, defined by F2c¢. (-)F*.

@ These transforms are related to the wave operators
Wy = lim exp(itHs)exp(—itHys), 0 =+,—,
t—=+o0

in the same way as in the nonrelativistic setting.
@ In particular, the scattering operator on %5 is given by

(8H(y) = Ss()f(y). Ss(y) = u(y),
with
Gly + ia— ib)G(y — ia+ ib)
G(y +ia)G(y — ia) '

uy)=—
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4B. The (reduced) N = 2 attractive case
@ Reminder:

s+(x) =sinh(rx/ay), ar =2n/u, a- =h/me, y =p/mcp.

@ The repulsive (same charge) and attractive (different charge)
AAOs are given by

As(x) = A, (x) = 5*2’;&)”’) exp(ia_d/dx) + (x — —x),
Ag(x) = A, (x — i j2) = SEXED) o oia drak) + (x — —x).
c(x)

@ Setting
c(x)=c(x—iay/2), w(x)=1/¢(x)c(—x) >0, Vx e R,

the corresponding Hamiltonian is
Ha(x) = W(x)"/2Aa(x)w(x) "2,

For b = a_ it equals e@-9/9x 4 g—ia-d/ox,
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@ N. B. The x-shift R(x — ia;./2, y) entails that modular invariance
and self-duality break down. As a result, Ay(x) has no natural
‘modular partner’;, and we might as well trade the spectral variable
y (a position) for p (a momentum). For brevity, we stick to y.

@ Clearly, we get two distinct eigenfunctions
Ad(X)R(x £ ia; /2,y) = 2¢.(y)R(x % ia, /2, y),

which entails
Ha(x)W(x)'2R(x + ia /2, y)

= 2¢, (y)W(x)"*R(x + ia; /2, y).

@ Snag. These Hy(x)-eigenfunctions remain eigenfunctions when
multiplied by any function m(x, y) that is ia_-periodic in x. There
are no general results ensuring that a particular choice yields a
function W(x, y) that can serve as the kernel of a unitary
eigenfunction transform.
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@ The linear combination
_ G(ib — ia) v"v(x)‘/2
V(X-Y) = Gaib—ia) 25 (b — y)o(—y)

x > de_(5(ib—y)/2R(x + diay /2, y),
o=+,

has coefficients ensuring unitary asymptotics:

t(y)e™v/ara- Re x — oo,
V(x,y) ~ { eimxy/ara- _ r(y)e—i7rxy/a+a_7 Re X — —o0,

Y s __s(b)
(}’)=mu(}’), f(}’)=mu(}’)-

@ N. B. The triple u, t, r satisfies the Yang-Baxter equations; note
alsor=0forb=(L+1)a_,L=0,1,2,....
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@ In joint work with S. Haworth we have shown that the transform

009 () (£6))

yields a unitary operator
F : Hyg = L3((0,00),dy)? = Hyg = L2(R, dx),

provided b € [0, a_]. Also, W(x, y) equals €™/~ for b= a_, so
then F amounts to the Fourier transform F.

@ Forb e (a_,a- + a;/2) the transform is isometric. Its range is the
orthogonal complement of L > 1 bound states

Wy (x) = mog(is+(x)), 0=0,...,L—1,

with Q,(t) g-Gegenbauer polynomials of degree ¢ and parity (—)°*.
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@ The transforms F () are related to the wave operators W.. as
before, and serve to associate a self-adjoint operator on H4 to the
AAO Hy(x), namely the pullback of multiplication by
(2¢4(y),2c4(y)) on Hg.

@ For afixed b € [0, a- + a;/2), the bound state number L is the
smallest integer such that b < (L+ 1)a_. For b > a_ we have
Hd\Ug = ng, with

E, =2c (i(b—(t+1)a_))€(0,2), ¢=0,...,L—1.

@ Setting
{=b/a., (=a/a,

the following plot can be viewed as a phase diagram. The red line
denotes the transition to the ‘unphysical’ regime (breakdown of
isometry and self-adjointness). On the lines £ = (L + 1)¢,
L=0,1,..., the reflection vanishes. Also, sG stands for the
sine-Gordon line £ = 1/2. The nonrelativistic limit arises by setting
& = X(, A = g/hfixed, and letting ¢ — 0.
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5. Further developments

@ In this section we sketch issues involving cousins of R(x, y)
defined for b € (0,2a) and x, y > 0, namely

J(x,y) = va;a_R(x,y)G(ia—2ib) [[ G(dy —ia+ ib),
o=+,—

and the self-dual real-valued function
F(x,y) = G(ia— 2ib)G(ib — ia)w(x)'?R(x, y)w(y)'/?,

which is related to the incoming wave function V(x, y) by

F(x,y) = u(y)""2¥(x,y).

@ Identifying L2((0, 00), dx) and L2((0, o), dy), we obtain a unitary
and self-adjoint involution Z with integral kernel
(2ara_)""/?F(x, ).
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5A. Product formulas

@ In joint work with M. Hallnds we have shown that the J-function
satisfies the product formulas

J(b: X, V)J(b: y, v) = % /0  dzw(b; 2)J(b: 2, v)

Il GU(&1x + 6oy + 63z — ib)/2),
61 762763:4’77

J(b; x, t)J(b; x,u) = %G(ia — ib)? /oo dvw(2a— b;v)J(b; x, V)
0

x JI  G((61t+6ou+ d3v + ib)/2 - ia).
61 762763:+77
@ These formulas have various spin-offs, including crucial
applications to the N = 3 joint eigenfunctions and limits yielding
novel product formulas for the conical function.
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5B. An SL(2,7Z) representation

@ The reduction approach to the various regimes of the classical
versions of the Calogero-Moser N-particle systems led L. Feher
and C. Klimcik to an SL(2,Z) representation in a self-dual regime
that is closely related to the relativistic hyperbolic regime whose
N = 2 quantum version is at issue here.

@ We have shown by a direct method that this representation also
holds true for the classical N = 2 hyperbolic relativistic case.
Moreover, up to some unresolved domain issues, this
representation persists at the quantum level.

@ Specifically, the SL(2,Z) generator ( 10

1 ) is represented by

the unitary involution Z and the generator ( 1 ? ) by the

Gaussian unitary G = exp(irx2/2a,a_). (Crux: the operators
ZG*T and GZG are equal up to an unknown phase.)

Simon Ruijsenaars (University of Leeds) A relativistic conical function Szeged, 29 March 2017 31/35



5C. Cherednik’s A; DAHA: First steps

@ In the present ‘modular’ setting there are two choices of DAHA,
labeled by § = +, —. Letting

X = es(x), D= exp(ia_sox),
and (sf)(—x) = f(—x), we can take as Demazure-Lusztig operator

S5(X + ib)

T = eslib) + =

(S —1 )7
and as Dunkl-Cherednik operator Y = sDT.
@ This entails
(T —es(ib))(T + es(—ib)) =1, TY'T=Y,
Y IXTTYXT? = e5(—ia_y),

as required.
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@ Moreover, on symmetric (even) functions the operator Y + Y~
acts as As(x), so it has R(x, y) as eigenfunction with eigenvalue
2¢5(y).

@ There is no obvious way to similarity transform Y + Y~'to a
(formally) normal operator on L?(R, dx). We have also been
unable to find a ‘non-symmetric’ eigenfunction of Y + Y~ whose
symmetric part equals R(x, y).

@ On the other hand, following van Meer/Stokman (IMRN, 2010), we
can use R(x, y) to construct solutions to a modular version of the
bispectral quantum Knizhnik/Zamolodchikov equations, involving a
matrix

Ms(x) 1 ( —S;(ib)es(x) Ss(x) ) ’

= S(x — ib) s5(x) —s5(ib)es(—x)

which satisfies Ms(x)Ms(—x) = 12.
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@ These bispectral quantum KZ equations are given by the system

<%&)%%m)MM%MH—&Qm—m&

and its x <> y counterpart.

@ The solution to these systems is given by the self-dual function
Fs = (F1,5, F2,5), with

Fis(x,y) = [R(x +ia_s,y) — es(—y — bYR(x, y)],

2s5(y + ib)

Fas(x, y) = es(=ib)[R(X, y) — F1.5(x, ¥)I.
@ This self-duality feature is encoded in the novel identity

Ss(X + Ib)YR(X +ia_s,y) — Ss(y + ib)R(x, y + ia_s)

= S5(X — Y)R(X,¥).

Simon Ruijsenaars (University of Leeds) A relativistic conical function Szeged, 29 March 2017 34/35



6. Some recent references

@ S. R. (2011): A relativistic conical function and its Whittaker limits,
SIGMA 7, 101.

@ M. Hallnas, S. R. (2014): Joint eigenfunctions for the relativistic
Calogero-Moser Hamiltonians of hyperbolic type. I. First steps,
Int. Math. Res. Not., no. 16, 4400—4456.

@ M. Hallnas, S. R. (2015): Product formulas for the relativistic and
nonrelativistic conical functions, to appear in Advanced Studies in
Pure Mathematics.

@ M. Hallnas, S. R. (2016): Joint eigenfunctions for the relativistic
Calogero-Moser Hamiltonians of hyperbolic type. Il. The two- and
three-variable cases, to appear in Int. Math. Res. Not.

@ S. Haworth, S. R. (2016): Hilbert space theory for relativistic
dynamics with reflection. Special cases, Journal of Integrable
Systems, doi: 10.1093/integr/xyw003.

Simon Ruijsenaars (University of Leeds) A relativistic conical function Szeged, 29 March 2017 35/35



	Overview
	Nonrelativistic 1D potential scattering
	2A. Scattering on the half-line
	2B. Scattering on the line

	The special potentials at issue
	3A. The repulsive case
	3B. The attractive case

	 The relativistic generalization
	4A. The (reduced) N=2 repulsive case
	4B. The (reduced) N=2 attractive case

	 Further developments
	5A. Product formulas
	5B. An SL(2,Z) representation
	5C. Cherednik's A1 DAHA: First steps

	 Some recent references

