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Non-computable numbers,
halting problem, Godel ...

s; =00000000000...
so =11111111111...
s3 =01010101010...
sy =10101010101...
ss =11010110101...
s =00110110110...
s7=10001000100...
s =00110011001...
S:o=11011100101..
s;75=11010100100 ...
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Complexity
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Traveling Salesman Problem

BRUTE-FORCE DYNAMIC ,
PROGRAMMING OELUNG ON EBAY:

ALGORITHMS: 0(1)

STILL WORKING
ON YOUR ROUTE?






















Simulated annealing

Optimization by
Simulated Annealing

S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi

In this article we briefly review the
central constructs in combinatorial opti-
mization and in statistical mechanics and
then develop the similarities between the
two fields. We show how the Metropolis
algorithm for approximate numerical
simulation of the behavior of a many-
body system at a finite temperature pro-
vides a natural tool for bringing the tech-
niques of statistical mechanics to bear on
optimization.

We have applied this point of view to a
number of problems arising in optimal
design of computers. Applications to
partitioning, component placement, and
wiring of electronic systems are de-
scribed in this article. In each context,
we introduce the problem and discuss

PR TR S . P THE R o . .

sure of the ‘‘goodness’’ of some complex
system. The cost function depends on
the detailed configuration of the many
parts of that system. We are most famil-
iar with optimization problems occurring
in the physical design of computers, so
examples used below are drawn from

with N, so that in practice exact solu-
tions can be attempted only on problems
involving a few hundred cities or less.
The traveling salesman belongs to the
large class of NP-complete (nondeter-
ministic polynomial time complete)
problems, which has received extensive
study in the past 10 years (3). No method
for exact solution with a computing ef-
fort bounded by a power of N has been
found for any of these problems, but if
such a solution were found, it could be
mapped into a procedure for solving all
members of the class. It is not known
what features of the individual problems
in the NP-complete class are the cause of
their difficulty.

Since the NP-complete class of prob-
lems contains many situations of practi-
cal interest, heuristic methods have been
developed with computational require-

Summary. There is a deep and useful connection between statistical mechanics
(the behavior of systems with many degrees of freedom in thermal equilibrium at a
finite temperature) and multivariate or combinatorial optimization (finding the mini-
mum of a given function depending on many parameters). A detailed analogy with
annealing in solids provides a framework for optimization of the properties of very
large and complex systems. This connection to statistical mechanics exposes new
information and provides an unfamiliar perspective on traditional optimization prob-

lems and methods.

led from www.sciencemag.org on May 27, 2012
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Computational complexity 2.0

Number of steps a TM takes to solve the problem

Number of steps a TM takes to solve the problem in the
WOrst case

Average time needed to solve a probable instance of the
problem

Computational problems become statistical physical
problems

Worst case scenario 1s astronomically improbable in the
thermodynamic limit (infinit number of cities)

Simulated annealing is the best heuristic method as of today



atic Quantum Computation

Quantum Computation by Adiabatic Evolution

Edward Farhi, Jeffrey Goldstone*

Center for Theoretical Physics
Massachusetts Institute of Technology
Cambridge, MA 02139

Sam Gutmann!
Department of Mathematics
Northeastern University
Boston, MA 02115

Michael Sipsert
Department of Mathematics
Massachusetts Institute of Technology
Cambridge, MA 02139

MIT CTP # 2936  quant-ph/D001106

Abstract

We give a quantum algorithm for solving instances of the satisfinbility problem, based on adiabatac
evolution. The evaolution of the quantum state = governed by a time-dependent Hamiltonian that
mterpolates between an instial Hamiltonian, whose ground state is easy to construct, and a final
Hamiltonian, whose ground state encodes the satisfying assignment. To ensure that the system
evalves to the dessired final ground state, the evolution time must be bag enough. The time required
depends on the minimmum energy difference between the two lowest states of the interpolating
Hamiltonian. We are unable to estimate this gap in gemeral. We give some special symmetric
cases of the satisfiability problem where the symmetry allows us to estimate the gap and we show
that, in these cases, our algorithm runs in polynomial timme.

ant-ph/0001106v1 28 Jan 2000
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Adiabatic theorem

A
ih— = H@@)WV
dt
H) Yy (t) = Er(t) Y (2)

V = Zk:Ck(t)lﬁk(t) exp[—%fm Ek(t’)dt’]

. 1 [ d
Cp(t) = — ZCk(t)CXPI%f [Ep(t’) — Ek(t')]df'}<¢fb %—?)
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dt

Elfk)‘l‘(lﬁk >=a,’f(t)+ak(t) =0
ap(t) = (Yp|0ys/0t) = 1Bp(2)

C, (1) = Ci(t) exp[if ﬂk(t')dt']

. . Ck(t) dH . f , ,
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The Most Advanced Quantum Computer
in the World

D-Wave Two\‘
512 qubit

D-Wave One

Number 128 qubit

of

Qubits -
D-Wave 2X

1000+ qubit

28 qubit

2012 2016

© 2016 D-Wave Systems Inc. All Rights Reserved | 49
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A scalable control system for a superconducting adiabatic quantum optimization
processor

M. W. Johnson,! P. Bunyk,' F. Maibaum,? E. Tolkacheva,! A. J. Berkley,' E. M. Chapple,'
R. Harris,! J. Johansson,' T. Lanting,' 1. Perminov,! E. Ladizinsky,! T. Oh,' and G. Rose'
' D-Wave Systems Inc., 100-4401 Still Creek Dr., Burnaby, BC V5C 6G9 Canada *

* Physikalisch Technische Bundesanstalt, Bundesalles 100, 38116 Brounschweig, Germany

We have designed, fabricated and operated a scalable system for applying independently pro-
gmmmable time-independent, and limited time-dependent flux biases to control superconducting
devices in an integrated circuit. Here we repart on the operation of a system designed to supply 64
flux biases to devices in a circuit designed to be a unit cell for a superconducting adiabatic quantum
optimization (AQQO) system. The system requires six digital address lines, two power lines, and a

handful of global analog lines.

PACS numbers: 85.25.1)q, 85.25 Hv, (3.67.Lx

L. INTRODUCTION

Several proposals for how one might implement a quan-
tum computer now exist. One of these is based on en-
abling adiabatic quantum optimization algorithms in net-
works of superconducting flux qubits connected via tun-
able coupling devices [1]. Flux qubits can be manipulated
by applying magnetic flux via currents along inductively
coupled control lines. This can be accomplished with
one analog control line per device driven by room tem-
perature current sources and routed, through appropriate
filtering, down to the target device on chip.

Beyond the scale of a few dozens of such qubits the
one-analog-line-per-device approach becomes impracti-
cal. Hundreds of qubits could require thousands of wires,
each subject to filtering, cross-talk, and thermal require-
ments so as to minimize disturbance of the thermal
and electromagnetic environment of the targeted qubits,
which are operated at milliKelvin temperatures. We re-
quire an approach that does not use so many wires.

One advantage of using superconductor based qubits is
the existence of a compatible classical digital and mixed
signal electronics technology based on the manipulation
of single flux quanta (SFQ) (2, 3]. The ability to manu-
facture classical control circuitry [4-6| on the same chip,
with the same fabrication technology as is used in con-
struction of the qubits, addresses many of the thermal
and electromagnetic compatibility requirements faced in
integrating control circuitry with such a processor. The
idea of using SFQ circuitry to control flux qubits is not
new, and has investigated by a number of researchers
[7-13].

Wcl present here a description of a functioning system
of on-chip Programmable Magnetic Memory (PMM) de-
signed to manipulate the parameters and state of super-
conducting flux qubits and tunable couplers, in such a
way as to overcome the scalability limitations of the one-

* mmwjohnsonSdw avesys.com
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_addr0
_addr1 E%l
B et

e

MJE‘F&L...

addr 4

~
32 DACs

FIG. 1. A 1:32 demultiplexer tree terminating in two-stage
multiple fux quantum DACs. The last address selects be-
tween the COARSE and FINE stages within a DAC. Two
such trees were implemented for the 684 DAC circuit reparted
here.

analog-ltne-per-device paradigm. This system comprises
three key parts.

The first of these is a SFQ demultiplexer used as an
addressing system. It is constructed as a binary tree of
2N _ 1 1:2 SFQ demultiplexer gates as shown in Fig. 1.
For the specific design discussed here, the number of ad-
dress lines N is 6. This demultiplexer allows many de-
vices to be addressed using only a few address lines.

The second part is a set of digital-to-analog converters
(DACs), located at the leaves of the address tree. These
DACs comprise storage inductors that can hold an inte-
ger number of single magnetic flux quanta (do = h/2e).
Their digital input are single flux quanta, and their ana-
log output are the stored flux, which can be coupled into
a target device. The magnitude of this output flux is
proportional to the number of stored flux quanta. Each
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Quantum annealing with manufactured spins

M. W._Johnson', M. H. §. Amin’, §. Gildert’, T. 1;.mnxf;’. F.Hamze', N. Dickson', R. Harris’ A J. Berkle
L M.C c > E.ladizirsky', N. Ladizirs

E.M.C Hilton', K. Karimi

. Johanssor”, P. Bunyk’,

[. ON', 1. Perminov’, C. Rich’, M. C. Thom',

. Uchaikin', J. Wang', B. Wilson' & G. Rose’

Manyinteresting but practically intractable problems can be reduced
to that of finding the ground state of a system of interacting sping
however, finding such a gromd state remains computa ionally
difficult’. It is believed that the ground state of some naturally occur
ring spin systems an be effectively attained through a process called
quntum annealing™”. If it coud be hamessed, quntum annealing
might improve on known methods for salving certain types of
problem®. However, physical investigation of quantum annealing
has been largely confined to microscopicspins in condensed -matter
systems* “. Here we use quantum amaling to find the ground
state of an artificial Ising spin system comprising an armay of eight
supercon ducting fux quantum bits with programmable spin-spin
couplings. We observe a clear signature of quntum annealing,
distinguishable from classical thermal annealing through the tem
perature dependence of the time at which the system dynamics
freezes. Owr implementation an be wnfigured in situ to realize a
wide variety of different spin networks, each of which can be
monitored as it moves towands a low-energy configuration™*.
This programmable artifidal spin nedwork bridges the gap between
the theoretical study of ideal isolated spin networks and the experi
mental investigation of buk magnetic smples. Moreover, with an
increased number of spins, such a system may provide a practical
physical means toimplement a quantum algorit hm, possibly allow
ing more-effective approa ches to solving certain classes of hard om
binatorial optimization problems.

Physiallyinteresting in their own right, systems of interacting spins
also have practicl importance for quantum computation'”. One
widely studied example is the Ising spin modd, wherespins may tke
an ane of two possible values: up or down along a preferred axis. Many
seemingly urrdated yet impartant hard problems, in fiekds ranging
from artifidal intdligence'* to zookgy ", can be reformulated as the
problem of finding the Jowest energy configuration, or ground state, of
an Ising spin syste:

Quantum amnealing has been proposed as an eflectiveway for find
ing such a ground state ™. To implement a processorthat uses quantum
annealing to help solve difficult problems, we would nead 2 program
mable quantum spin system in which we could contral individual
spins and their couplings, perform quantum annealing and then
determine the state of each spin. Until recently, physical investigation
of quantum annealing has been confined to configurations achievable
in amndensal-matter systems, such as molecular nanomagnets* ™ ar
bulk solids with quantum criial behaviour''*%. Unfortunately, these
systems annot be antrolled or measured at the level of individual
spins, and are typiclly investigated through the measurement of bulk
properties. They are nat programmahle. Nuclear magnetic resonance
techniques have been wsad to demonstrate 2 quantum annealing algo-
rithm on three quantum spins®. Reaently, three trappal ions were
used to perform a quantum simulation of 2small, frustrated Ising spin
system'”.

One possible implementation of an arntificial Ising spin system
involves superconducting flux quantum bits™* (qubits). We have

O-Worvw Synterss I, 1004401 o O, Bearm by, Bncah (durbs
Dupartrraet: of Physcy, Srmon Frioser Unvesiy, By Brtish Columbe V58 1 95, Carda

12 MAY 2011

implemented such a spin system, interconnected as a bipartie graph,
using an in situ reconfigurable armay of coupled superconducting flux
qubits'®. The devie fbrication is discussed in Methods and in Sup-
plementary Infformation. The simplified schematic in Fg 1a shows
two superconducting loops in the qubit, each subject to an external fux
bix @, or®,,  respectivdy. The deviee dynamicscanbemoddled asa
quantum mechanicl double well potential with respect 1o the fhux, @y,
in loop 1 (Fig. 1b). The barrier height, 8U, is controlled by @, The
energy difference between the two minima, 2k, is contralled by @y,
The two lowest energy states of the system, corespondingto dockwise
ar antidockwise circulating current in Joop 1, are hbdled | [) and | 1),
with flux localized in the left- or the right-hand well (Fig. 1b), respec

tively. If we consider anly these two states (2 valid restriction at low
temperature), the qubit dynamics is equivalent © thase of an Ising
spin,and we treat the qubits as such in what follows. Qubits (spins )are

B |

superconducting flux qubit acting as a quantum mechanical spin. Circulating

current in ¢he qubitloop gwes rise © 2 fiux insde, encoding two distinct spin

states that canexist in a superposition. b, Double well potential energy dagram

and the lowest quantum energy leves coresponding o the qubit Sates |7)

and | ) are the lowest twolewels, repecivdy The intra-well energy spacing s

3, Themeasurement detects magnetization, and does not distinguish between,
and excied states with in the right-hand well In practice, these

vt T Ovpaer twt of Netrsd Sawnoe, Un ety of Ageter, Post Box 222, NO-SE04 Kt woaexd, Norwary

©2011 Macenilan Publichers Limted. Al rightc recerved
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Fig. 1. Chimera unit cell topology. (Left) Layout sketch: qubit bodies are
represented by the elongated loops that span the whole width/height of the
unit tile. Each qubit is coupled to four others within the unit tile via the
internal coupler bodies (dark L-shaped objects). Qubits are coupled to others
in neighboring tiles via external couplers (lighter dashed rectangles). Control
circuitry (®-DACs and corresponding analog control structures) are placed
within light-shaded areas between the qubit/coupler bodies. (Right) Graph
representation: each unit tile corresponds to a complete bipartite graph K4 4
(dark nodes and solid line edges). Qubits from different tiles are coupled in
square grid fashion (dashed edges).




128 qubit C, Chimera graph




Programming D-Wave



Map coloring problem
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Objectives




Blue qubit Green qubit

Yellow qubit Red qubit

Objective : O(qb, A9, 9y qy) = (qb +q9g+qr +qy— 1)z =

-1(9p + 94+ q, + q,)
+2(qp94 + 9p9r + 9bqy + 499 + 999y + 9+9y)



Maping onto the unit cell




Code

/* STEP 1: turn on one of C qubits */
/* Handle weights */
for (i=0; i<C; ++i)

{

weight [DW_QUBIT(row,col,’L’,i)] +=
weight [DW_QUBIT(row,col,’R’,i)] +=

}
/* Handle strengths */
for (i=0; i<C; ++i)
for (j=0; j<C; ++j)
if (i 1= j)
strength [DW_INTRACELL_COUPLER(row,col,i,j)] += 1;




Neighbors and cloning
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Chunks

chunk 1 chunk 2 chunk 3

Divide the US map into
chunks.

Process the first chunk and
get valid colorings for the
first chunk of states.

Use these colorings to bias
the second chunk.

Repeat.

# of colors Needle Haystack
3 0 3% = 2.4x10%°

4 25623183458304 | 4" = 3.2x10%"




Timing Benchmark — Smaller is Better

10000 ~@— CPLEX 1
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Machine Learning: Binary Classification

Traditional algorithm
recognized car about 84% of §
the time

* Google/D-Wave Qboost
algorithm implemented to
recognize a car (cars have
big shadows!)

* "“"Quantum Classifier” was
more accurate (94%) and
more efficient

* Ported quantum classifier
back to traditional computer,
more accurate and fewer
CPU cycles (less power)!

p::waue © 2016 D-Wave Systems Inc. All Rights Reserved | 47
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Exciton dynamics in chromophore aggregates with correlated environment
fluctuations

Darius Abramavicius'® and Shaul Mukamel?:®)

!State Key Laboratory of Supramolecular Structure and Materials, Jilin University, People’s Republic of
China, and Physics Faculty, Vilnius University, Lithuania

2Chemistry Department, University of California Irvine, California 92697-2025, USA

(Received 18 February 2011; accepted 27 March 2011; published online 5 May 2011)

We study the effects of correlated molecular transition energy fluctuations in molecular aggregates
on the density matrix dynamics, and their signatures in the optical response. Correlated fluctua-
tions do not affect single-exciton dynamics and can be described as a nonlocal contribution to the
spectral broadening, which appears as a multiplicative factor in the time-domain response function.
Intraband coherences are damped only by uncorrelated transition energy fluctuations. The signal can
then be expressed as a spectral convolution of a local contribution of the uncorrelated fluctuations
and the nonlocal contribution of the correlated fluctuations. © 2011 American Institute of Physics.
[doi:10.1063/1.3579455]

number of excitons. The chromophores are electrically |

tral and interact via the dipole—dipole Coulomb interacti il
The electronic charge densities of different chromophore 1 ('Qﬂ
not overlap so that electron exchange is negligible. In _‘(\A/(\
molecular basis set the Frenkel exciton Hamiltonian read:

m#n
I:IS — Zsm B,i;,gm + Z JmnBI,Bm

m,n




EFMO as a little quantum
computer

"When viewed in this way, the system 1s essentially performing a single
quantum computation, sensing many states simultaneously and

selecting the correct answer, as indicated by the efficiency of the
energy transfer. In the presence of quantum coherence transfer, such

an operation 1s analogous to Grover’s algorithm, with the hamiltonian
describing both relaxation to the lowest energy state and coherence
transfer (refilling the coherence lost from the transfer to the
lowest-energy state); such a scheme can provide efficiency beyond that
of a classical search algorithm. This mechanism contrasts with a
semiclassical ’hopping’ mechanism through which the excitation moves
stepwise from exciton state to exciton state, dissipating energy at
each step, which would be similar to a classical search where only one
state can be occupied at any one time. Such a mechanism also raises
the possibility of non-local events, although more detailed analysis 1is
needed before we can determine whether such effects are present

in FMO."
Fleming and Engel (Nature, 2007)




EFMO 1s searching the energy
minimum

3 4

Position x

Figure 1. (a) Crystal structure of the FMO complex of C. tepidum (Protein
Data Bank accession 3ENI), with lines between the chromophores representing
dipolar couplings. The thickness of the lines indicates the coupling strengths.
Only couplings above 15 cm™! are shown; the largest coupling is 96 cm™'. The
full Hamiltonian is given in appendix A. (b) Site energies, shown relative to
12210cm™!, in the reduced dimensionality model derived from mapping the
strongest couplings onto a one-dimensional graph. The red sites (1, 6) are source
sites at which the excitation enters the complex and the black site (3) is the trap
site from which the excitation is transferred to the reaction center [27, 28].







