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Outline of this talk
Hawking: ”The greatest enemy of knowledge is not ignorance, but the illusion of knowledge.”

Acceleration and energy variance

Rindler trajectories in imaginary time

Accelerated Doppler→ Planck spectrum

Other radiation and other effects
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Planck scale
from natural constants

We have four natural constants: G, c, k , ~.

They connect:

1 c: length with time, and mass with energy

2 G: mass and length with energy

3 k : temperature with energy

4 ~: action scale: energy with time, momentum with length

try and catch: MP =
√

~c/G, LP =
√

~G/c3
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Planck scale
in a physical situation

In a Compton wavelength distance from source the Newton potential equals to
the rest mass energy.

From this follows
GMm

r
= mc2 and r =

~
Mc

(1)

This concludes again as
GM2c

~
= c2. (2)

solution: M = MP =
√

~c/G, r = LP =
√

~G/c3
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Planck’s natural system of units
M. Planck, Über irreversible Strahlungsvorgänge, Sitz.Ber.Preuss.Akad.Wiss. 449-476 (1898)

Wiens’law: w = 8πν2

c3 bν e−aν/T . From Planck’s law limit: b = h = 6.626× 10−27 erg
sec, and a = h/k = 4.798× 10−11 cm K.

1 length: LP =
√

~G/c3 = 1.616× 10−33 cm

2 mass: MP =
√

~c/G = 2.176× 10−5 g

3 time: tP = LP/c = 5.392× 10−44 s

4 temperature: TP = MPc2/k = 1.417× 1032 K.

”These quantities preserve their natural meaning as long as the laws of gravitation, propagation of light in

vacuum and both the two laws of heat theory remain valid, that is, being measured by most various

intelligent beings unsing most different methods, they must always give the same value.”
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© -
Uncertainty relations
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Hermitic operators
and their combinations

Let A = A†, B = B† (be hermitic operators). For the sake of simplicity: 〈A〉 = 〈B〉 = 0.
Now ∆A2 =

〈
A2〉 and ∆B2 =

〈
B2〉.

We construct a combined (not hermitic) operator:

C ≡ λA +
i
λ∗

B. (3)

From this C† = λ∗A− i
λ

B.

CC† = |λ|2A2 + iBA− iAB +
1
|λ|2

B2

C†C = |λ|2A2 − iBA + iAB +
1
|λ|2

B2 (4)

〈
CC†

〉
≥ 0 and

〈
C†C

〉
≥ 0.

Biró Unruh temperature 7 / 48



Quantum uncertainty
Acceleration and imaginary time
Accelerated Doppler = Planck?

Spectrum of an Accelerating Charge

An inequality
following from

〈
CC†

〉
≥ 0 and

〈
C†C

〉
≥ 0

A consequence of eq.(4)

© -
1
2

(
|λ|2

〈
A2
〉

+
1
|λ|2

〈
B2
〉)
≥
∣∣∣∣〈 i

2
[A,B]

〉∣∣∣∣ (5)

The minimum of the arithmetic mean is just the
geometric one!

∆A ·∆B =
√〈

A2
〉 〈

B2
〉
≥
∣∣∣∣〈 i

2
[A,B]

〉∣∣∣∣ . (6)
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Minimal variance relations
Not ”insecurity”

Note: A2 = A + a1 and B2 = B + b1 imply [A2,B2] = [A,B] and
∆A2

2 =
〈
A2

2

〉
− 〈A2〉2 =

〈
A2〉, same for B2.

© The general result -

∆A ·∆B ≥
∣∣∣∣〈 i

2
[A,B]

〉∣∣∣∣ (7)

∆x ·∆p ≥
∣∣∣〈 i

2
~
i

〉∣∣∣ = ~
2 . Heisenberg

∆E ·∆p ≥
∣∣∣〈 i

2 [H,P]
〉∣∣∣ = ~

2 |〈F 〉|. Force

∆E ·∆x ≥
∣∣∣〈 i

2 [H,Q]
〉∣∣∣ = ~

2 |〈v〉|. Velocity
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Variance-bounds beyond Heisenberg
Clock-operator

In closed systems dA
dt = i

~ [H,A]. The inequality says

∆E ·∆A ≥
∣∣∣∣ i
2

[H,A]

∣∣∣∣ =
~
2

∣∣∣∣〈 dA
dt

〉∣∣∣∣ . (8)

Rearranged somewhat

∆E ·
∆A∣∣∣〈 dA

dt

〉∣∣∣ ≡ ∆E ·∆tA ≥
~
2
. (9)

All time elapse variances defined by such operators do have a lower bound!
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Variance-bounds beyond Heisenberg
Gravitational red-shift

Energy of a radially moving photon in SChwarzschild metric, in weak grav. field:

E = ~ω
√

1−
2GM
c2r

≈ ~ω −
GM

r
~ω
c2
. (10)

〈E〉 ≈ ~ω, and due to the dispersion formula ∆E = c∆p. Expectation value of the
force 〈F 〉 = GM

r2
~ω
c2 = g ~ω

c2 .

Let us apply here the result ”product of enbergy and momentum variances ≥ ~/2 times
the exp. value of the force”:

∆E ·
∆E
c
≥

~
2
〈E〉
c2

g. (11)

© Photon uncertainty -
∆E2

〈E〉
≥

~g
2c

= πkTUnruh. (12)

For the Boltzmann distribution ∆E2/ 〈E〉 = kT is exact!
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Constant acceleration on a line
in the comoving frame using c = 1 units

Velocity four-vector:
uµ = (cosh η, sinh η, 0, 0) . (13)

Acceleration four-vector:

duµ

dτ
=

dη
dτ

(sinh η, cosh η, 0, 0) . (14)

Its constant Minkowski-length be

∥∥∥∥duµ

dτ

∥∥∥∥2
= −

(
dη
dτ

)2
= −g2. (15)

solution: η = g τ .
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Rindler trajectories
defined by constant comoving acceleration

One obtains
uµ = (cosh(gτ), sinh(gτ), 0, 0) (16)

The Rindler trajectories are given in the xµ(τ) parametrization:

xµ =

(
1
g

sinh(gτ),
1
g

(cosh(gτ)− 1), 0, 0
)
. (17)

In the low acceleration limit we obtain Galilei’s result:

xµ ≈
(
τ, g

τ2

2
, 0, 0

)
. (18)
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Rindler trajectories in imaginary time
are periodic!

Consider τ = i~β with β = 1/kT .

The Rindler trajectory becomes

xµ =

(
i
g

sin(~βg),
1
g

(cos(~βg)− 1), 0, 0
)
. (19)

Taken at the period, gτ = g(i~β) = 2iπ, we determine the Unruh temperature:

Unruh temperature as an imaginary-time period c restored ,

kT =
~g

2πc
. (20)
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Doppler effect
signals from moving source

Spectrum of a monochromatic source: δ(ν − ω)

Spectrum of an inertially moving mono source: δ (ν − γ(ω − k · v))

Spectrum of a free falling source on a line?

S(ν) ∼
∣∣∣F−1
τ

(
ei(ωt(τ)−kx(τ))

) ∣∣∣2 . (21)
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Doppler effect
phase and amplitude along Rindler trajectories

The phase in the Fourier back-transformation: ϕ = ω(t − x) in c = 1 units.

On a Rindler trajectory the retarded time:

t − x =
1
g

[
1− e−gτ ] (22)

Here g → g/c is a frequency...

The dimensionless Fourier amplitude becomes

A(ν) = eiω/g
+∞∫
−∞

e−i ωg e−gτ
eiντ gdτ. (23)
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Doppler effect
integral over red-shift factor

The red-shift factor, z = d
dτ (t − x) = e−gτ is a good variable.

Its limiting values are: z(−∞) = +∞ and z(+∞) = 0. Differentials: gdτ = −dz/z.

The complex amplitude becomes

A(ν) = eiω/g
∞∫

0

dz
z

e−iωz/g eiν(− 1
g ln z)

= eiω/g
(

i
ω

g

)iν/g
Γ

(
−i
ν

g

)
. (24)

Important: i i νg = ei π2 ·
iν
g = e−

πν
2g
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Doppler effect
the observed intensity

With fixed sign of g there is no time reversal: A(−ν) 6= A(ν)∗.

The intensity:

|A(ν)|2 = e−π
ν
g Γ

(
i
ν

g

)
Γ

(
−i
ν

g

)
. (25)

A property of Gamma functions:

Γ(ix) Γ(−ix) =
1

(−ix)
Γ(ix) Γ(1− ix) =

i
x

π

i sinh(πx)
=

π

x sinh(πx)
. (26)

leads to
N(ν) ≡

ν

2πg
|A(ν)|2 =

1
e2πν/g − 1

. (27)

Compare with Planck’s law: kT = g~/(2πc).
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Time reversal
KMS relation

What about negative frequencies (”heated vacuum”)?

|A(−ν)|2

|A(+ν)|2
= e

2πνc
g (28)

Kubo-Martin-Schwinger for the numbers:

−N(−ν)

N(ν)
= e

2πνc
g = 1 +

1
N(ν)

. (29)

KMS interpretation ,

−N(−ν) = 1 + N(ν). (30)
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Pseudo-thermalization? Pseudo-Hydro?

Figure: Unruh effect (1975), Hawking radiation (1975)

v = tanh ξ, ui = (cosh ξ, sinh ξ), ai = (sinh ξ, cosh ξ)
dξ
dτ

ai ai = −g2, ξ = ξ0 − gτ ; z = e−ξ, g dτ =
dz
z
.
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Is the Unruh temperature measurable?

Unruh temperature in Planck units: T = g
2π

Unruh temperature in ordinary units: kBT = ~
c

g
2π

Small for Newtonian gravity: g = GM/R2, therefore kBT = Mc2/2π · L2
P/R2. On Earth’

surface we have kBT ≈ 10−19 eV (10−16× room temperature) .

Perceivable for heavy ion collisions: g = c2/L = mc3/~ for stopping in a Compton
wavelength. For a proton of mass m = 940 MeV we have kBT = mc2/2π ≈ 150 MeV.
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Photon Spectrum from Linear Acceleration

Photon number:

d3N =
1

2k0

d3k
(2π)3

∑∣∣∣ε(a) · J(k)
∣∣∣2

Source:
J i (k) = q

∫
eik·x(τ)ui (τ) dτ.

After partial integration only the acceleration related term kept:

ε · J(k) = q
∫ τ2

τ1

eik·x(τ) d
dτ

(
ε · u
k · u

)
dτ
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Relativistic Kinematics

Photon ki = k⊥(cosh η, sinh η, cosψ, sinψ)
Source velocity: ui = (cosh ξ, sinh ξ, 0, 0)
Integration parameter: vi = tanh(ξ − η), g = dξ/dτ .
Amplitude

A =
eiφ0

k⊥

∫ v2

v1

eik⊥γv/g dv

Photon Yield

k2
⊥

dN
k⊥dk⊥dη

= 2α

∣∣∣∣∣
∫ ξ2−η

ξ1−η
ei (k⊥/g) sinh ξ dξ

cosh2 ξ

∣∣∣∣∣
2
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Relation to Unruh

Photon Yield for infinitely long path (ξ1 = −∞, ξ2 = +∞):

k2
⊥

dN
k⊥dk⊥dη

= 8α
k2
⊥

g2
K 2

1 (k⊥/g)

Asymptotics of the Bessel K-function is exponential!

dN
k⊥dk⊥dη

−→
8α
g2

πg
2k⊥

e−2k⊥/g

Tspectral = π TUnruh = min. of ∆E2

〈E〉 .

Biró Unruh temperature 24 / 48



Quantum uncertainty
Acceleration and imaginary time
Accelerated Doppler = Planck?

Spectrum of an Accelerating Charge

Nonrelativistic approximation (γ = 1)

k2
⊥

dN
k⊥dk⊥dη

=
8αg2

k2
⊥

sin2
(

k⊥
2g

(v2 − v1)

)

This gives an invariant yield smaller than 1/k4
⊥, and shows interference effects.
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Infrared (k⊥ → 0) limit
even relativistic!

lim
k⊥→0

k2
⊥

dN
k⊥dk⊥dη

= 2α |v2 − v1|2

In terms of rapidities

lim
k⊥→0

k2
⊥

dN
k⊥dk⊥dη

= 2α

∣∣∣∣∣ 2 sinh ξrel cosh ξrel

cosh2(η − ξmid) + sinh2(ξrel)

∣∣∣∣∣
2

rel: half difference, mid: half sum.
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Short Time and Long Time Acceleration

Short time –> small |ξrel| Landau-like bell shape

lim
k⊥→0

k2
⊥

dN
k⊥dk⊥dη

= 8α
ξ2

rel

cosh4(η − ξmid)

Long time –> large |ξrel| Bjorken-Hwa-like plateau

lim
k⊥→0

k2
⊥

dN
k⊥dk⊥dη

= 8α
1(

1 + 4 e−2|ξrel| sinh2(η − ξmid)
)2

Infinite time: Biró + Gyulassy + Schram: PLB 708: 276 (2012)
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(Semi)classical Photon Rapidity Spectra
T. S. Biro, Z. Schram, Z. Szendi: EPJ A 50 (2014) 62
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Differential Photon Rapidity Distributions
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Elliptic Flow
T. S. Biro, M. Horvath, Z. Schram: EPJ A 51 (2015) 75

Illusory Flow by Unruh type radiation in dN/dη
∗ (1401.1987 –> EPJ A 2014)

Exponential Tails in k⊥ envelop interference
∗ (1111.4817 –> PLB 708 (2012) 276)

This section: Jacobi-Anger Formula delivers Elliptic Flow –> EPJ A 2015
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Fourier Spectrum of Phase Difference in k⊥-space

Jacobi-Anger Formula

eix cos Θ = J0(x) + 2
∞∑

n=1

inJn(x) cos(nΘ). (31)
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Interference Term in 1-Photon Yield

The yield is proportional to

Y ∝
∣∣∣A1eik·x1 + A2eik·x2

∣∣∣2 (32)

Detector angle α, distance angle ψ, distance d result in

Y ∝
∣∣∣A1eik⊥

d
2 cos(α−ψ) + A2e−ik⊥

d
2 cos(α−ψ)

∣∣∣2 (33)

Expanding the square we arrive at (real and positive):

Y ∝ |A1|2 + |A1|2 + A1A∗2 eik⊥d cos(α−ψ) + A∗1 A2e−ik⊥d cos(α−ψ) (34)
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Higher Flow coefficients Θ = α− ψ

Flow coefficients are defined by relative amplitudes of cos(nΘ) terms to the zeroth
order term.

vn =
2Rn Jn(k⊥d)

|A1|2 + |A2|2 + R0 J0(k⊥d)
(35)

with
Rn := 2 Re

(
inA1A∗2

)
= 2 |A1| |A2| cos

(
∆ϕ+ n

π

2

)
.

In relative ratios of this Young interference k⊥ powers cancel in the ratio of A-squares!!!
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Higher Flow coefficients

The complex amplitudes may differ in a further phase ∆ϕ due to longitudinal and time
positions at the start and at the end of deceleration.

We define the interference ratio :

rn :=
2 |A1| |A2|
|A1|2 + |A2|2

cos
(

∆ϕ+
nπ
2

)
. (36)

We get

vn =
2rn Jn(k⊥d)

1 + r0 J0(k⊥d)
(37)
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v2 behavior

For n = 2 the (in)famous v2 is

v2 =
−2 ε J2(k⊥d) cos(∆ϕ)

1 + ε J0(k⊥d) cos(∆ϕ)
(38)

with

ε =
2 |A1| |A2|
|A1|2 + |A2|2

≤ 1. (39)

For small k⊥d the J-Bessel behave like power, so v2 would go like k2
⊥.
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Longitudinal Phase averaged v2 formula

Considering a longitudinal phase difference ∆ϕ

vn =
2εJn cos

(
∆ϕ+ nπ

2

)
1 + εJ0 cos(∆ϕ)

. (40)

Integrating over ∆ϕ uniformly we obtain

〈vn〉 = 2 cos(n
π

2
)

Jn

J0

1− 1√
1− ε2J2

0

 (41)

In particular for |A1| = |A2| it is ε = 1 and one obtains

〈v2〉 = 2
J2

J0

 1√
1− J2

0

− 1

 (42)

This result starts linearly for small k⊥d .
Biró Unruh temperature 37 / 48



Quantum uncertainty
Acceleration and imaginary time
Accelerated Doppler = Planck?

Spectrum of an Accelerating Charge

Longitudinal Phase averaged v2 picture
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<
 v

2
 >

kT d

Longitudinal Phase averaged v2 from Unruh dipole

equal amplitudes

Figure: It starts linear, then levels, then falls again.
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v2 vs amplitudes formulas

v2 coefficient expressed by the amplitude ratio:

v2 = F2
2J2(x)

J0(x)

 1√
1− ε2J2

0 (x)
− 1

 (43)

with x = k⊥d ,

ε =
2 |A1| |A2|
|A1|2 + |A2|2

(44)

and F2 depending on centrality, but not on k⊥.
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v2 dependence on amplitude ratio |A1|/|A2| picture
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Figure: It starts linear only for equal amplitudes, otherwise quadratic.
For all curves F2 = 1.
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v2 (de-)magnified by centrality factors picture
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Figure: It copies the same core function with k⊥-independent factors.
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Fit parameters

In the simplest (two-antenna arrays) scenario we fit:

ε = 2γ
1+γ2 , γ = |A1|/|A2| magnitude ratio parameter

B = d antenna distance parameter

A = F2 geometric form factor

We assume that F2 depends on centrality, but not on the momentum k⊥.
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Photon v2
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Inclusive photon v2

v2 fit to ALICE, A=1.6957, B=0.4294, γ=1
v2 fit to PHENIX, A=1.7484, B=0.4267, γ=1

ALICE 0-40% in centr. (J. Phys. Conf. 446 012028 (2013))
PHENIX 0-92% in centr. (PRL 96, 032302 (2006))
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Pion
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Charged pion v2

v2 fit to STAR data, A=1.8479, B=0.3735, γ=1.0892
v2 fit to PHENIX data, A=1.8659, B=0.4250, γ=1.0992

STAR, ch. pion dE/dx (0-80% minbias.), √s=62.4GeV (PRC 75:054906 (2007))
PHENIX, ch. pion, √s=200GeV (PRL 91:182301 (2003))
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Charged hadrons
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Charged hadron v2

v2 fit to STAR data, A=1.8377, B=0.3507, γ=0.9252
v2 fit to PHENIX data, A=1.9595, B=0.3648, γ=1.0797

STAR, ch. hadrons (0-80% minbias.), √s=62.4GeV (PRC 75:054906 (2007))
PHENIX, ch. hadrons, √s=200GeV (PRL 91:182301 (2003))
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Fit conclusions

Even a simple model comes close to data

No need for hydrodynamics or initial state fluctuations

Fits to amplitude ratio and characteristic distance are stable

Fits to the centrality factor scatter

The shape of v2 vs k⊥ is explained well!
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Summary of heavy-ion related studies

Spectral temperature can be a ”deceleration effect”

Bell-shaped and Plateau-shaped Rapidity Distributions from ”relativistic Doppler”

Azimuthal coefficients from ”dipole interference”

Local Equilibrium (Thermal and Flow Models) appear but they are not there

Quantum (Wave) behavior can only be trapped by observing interference
patterns

Independent and uniformly random filling of phase space always looks at the end
as a ”thermalized” distribution of energy
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Summary of Planck scale occurrence

Planck scale is physical

Occurs in energy uncertainty for accelerated photons

Sets the imaginary time period in BH physics

Occurs as ”temperature” due to smeared Doppler effect
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