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Recent buzz around quantum computing

Quantum Computing is very popular nowadays:

Everybody talks about this
from the Canadian Prime Minister to EU officials.

Recent Nobel prize given to related research (Haroche,
Wineland).

Many physicists specializing in this field get jobs in
Multinational Companies.

EU Quantum Technology Flagship, US Quantum Technology
Strategy.



Google created already two types of Quantum Engineer
positions



Lots of quantum start-ups
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The (trivial) emerging technology hype cycle



Feynman’s question and vision

You cannot even describe the state of 100 quantum dipole
moments (spins) with any future classical computer. What should
we do?
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This opened the way for the idea of quantum algorithms (Deutsch
’85, Deutsch-Jozsa ’87, Bernstein-Vazirani ’88, Shor ’94)
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Bernstein-Vazirani Algorithm



Bernstein-Vazirani Algorithm

optimal classical strategy: n tries
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Finding the prime factors of integers is hard

The most popular public-key cryptosystem, the RSA
(Rivest-Shamir-Adleman) encryption, which was developed
already in 1978, uses the observation that multiplying integers
is easy, factoring integers into prime factors is hard.

For example, let us have a look at the factors of the following
232 decimal digits (768 bits) number



The RSA Factoring Challenge

What about the following 230 decimal digits (762 bits)
number?



Shor’s Algorithm
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Random bosonic circuits (I)

Universal extensions of bosonic linear optics can be used to generate

random bosonic circuits which generate states useful in quantum

computing and quantum metrology1.

1M.O, R. Augusiak, C. Gogolin, J. Ko lodyński, A. Acin, and M. Lewenstein
Phys. Rev. X 6, 041044 (2016)



Random bosonic circuits (II)

Can states mimicking the properties of Haar-random states on Hb be
generated efficiently?

Construction of the universal set of gates in Hb:
Three linear gates generating whole linear optics [Sarnak 1986]
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, V2 =

1√
5

(
1 −2
−2 1

)
,

V3 =
1√
5

(
1 + 2i 0

0 1− 2i

)
,

Supplement this set of gates by cross-Kerr like transformation
VCK =exp

(
−iπ

3
n1n2

)
.

In each step the gate Ui is chosen uniformly at random from a possibly
universal gate-set. Is this universal?

Ui ∈
{
V̂1, V̂2, V̂3, VCK,+h.c

}



Basic problem (I)

Transformations allowed to perform on a quantum system
belong the unitary group U(H), where H - Hilbert space of
the system.

Full controllability: ability to perform any U ∈ U(H).

Pure state controllability: ability to perform any U ∈ U(H)
or U ∈ USp(H).

Limited resources: only a subset G ⊂ U(H) is available.
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Basic problem (II)

In our works:

What gates can be generated when G is supplemented with
and additional gate V /∈ G?

Physical scenarios considered: restricted gate sets for bosonic
and fermionic systems



Formal definition of universality

A collection of quantum gates S ⊂ U(H) is called universal
in H iff every element U ∈ U(H) can be approximated
arbitrarily well with elements Ui ∈ S:

∀ε ∃Uik ∈ S such that ‖U − Ui1Ui2 · · ·UiN ‖ ≤ ε



Example 1: distinguishable particles

Local qubit gates LU = U(2)×U(2)× . . .×U(2) plus any
entangling gate is universal in (C2)⊗N .2

Clifford gates (important for quantum error-correction) are
universal in (C2)⊗N , when supplemented with any extra gate.3

2J. L. Brylinski and R. Brylinski, Math. Quant. Comp. 79 (2002)
3G. Nebe et al., Designs, Codes and Cryptography 24, 99 (2001)
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entangling gate is universal in (C2)⊗N .2
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OUR WORK: Analogous analysis for non-distinguishable particles

2J. L. Brylinski and R. Brylinski, Math. Quant. Comp. 79 (2002)
3G. Nebe et al., Designs, Codes and Cryptography 24, 99 (2001)



SETTING

(A) N Bosons in d modes + passive linear optics

Hb = SymN (Cd) , LOb =
{
U⊗N

∣∣ U ∈ U(d)
}
.

(B) N Fermions in d modes + passive linear optics

Hf =

N∧
(Cd) , LOf =

{
U⊗N

∣∣ U ∈ U(d)
}
.

(C) Fermions in d modes in the positive parity subspace
+ active fermionic linear optics

H+
Fock =

b d
2
c⊕

m=0

2m∧
(Cd) , FLO - pp. Bogoliubov transformations .



Problem studied

What gates can be generated when bosonic/fermionic linear optics
is supplemented with an additional gate V /∈ LO?

The answer must depend on: type of particles, number of
modes and number of particles.



More general physical context and motivation

(A) Bosons: photonic linear optics4, interferometry and
metrology5.

(B) Passive fermionic linear optics: fermionic interferometry,
restricted model of quantum computation6.

(C) Active fermionic linear optics: restricted model of quantum
computation8, Ising anyons7.

4E. Knill, R. Laflamme, and G. J. Milburn, Nature 409, 46 (2001).
5V. Giovannetti, et al., Phys. Rev. Lett. 96, 010401 (2006)
6D. P. DiVincenzo and B. M. Terhal, Found. Phys. 35, 1967 (2005)
7S. Bravyi, Phys. Rev. A 73, 042313 (2006)



Mathematical detour (I): membership problems

Hamiltonian and group membership problem:

Is there an efficient way to determine whether
iH̃ ∈ 〈iH1, iH2, . . . , iHn〉Lie?

Discrete case: {U1, U2, . . . Un} set of unitaries; G is the
discrete (finite or infinite) group generated by this set. Is there
an efficient way of determining whether Ũ ∈ G?



Mathematical tools (I): simple symmetries

For Unitary Gates:

If there exists a non-trivial symmetry S, such that [S,Ui] = 0
for all {U1, U2, . . . , Un}, but [S,U ] 6= 0, then U cannot be
generated.

For Hamiltonians:

If there exists a non-trivial symmetry S, such that [S,Hi] = 0
for all {iH1, iH2, . . . , iHn}, but [S, iH] 6= 0, then iH cannot
be generated.

However, this is only a necessary, but not sufficient, condition.



Mathematical tools (II): higher-order symmetries

For Unitary Gates:

A non-trivial second-order symmetry S(2) on H⊗2 or a
third-order symmetry S(3) on H⊗3 are operators that satisfy
[S(2), Ui ⊗ Ui] = 0 and [S(3), Ui ⊗ Ui ⊗ Ui] = 0 for all
{U1, U2, . . . , Un}.
If for some n-th order symmetry [S(n), U⊗n] 6= 0, then U
cannot be generated. However, only by checking it for
all n is this known to be a sufficient an necessary condition.

For Hamiltonians:

Second-order and third-order symmetries:
[S(2), iH` ⊗ I + I⊗ iH`] = 0 and
[S(3), iH` ⊗ I⊗ I + I⊗ iH` ⊗ I + I⊗ IiH`] = 0 for all
{iH1, iH2, . . . , iHn}.
[S(2), iH ⊗ I + I⊗ iH] 6= 0 ⇔ iH /∈〈iH1, . . . , iHm〉Lie
(morally).8

8
Z. Zimborás, R. Zeier, T. Schulte-Herbrueggen, D. Burgarth, Symmetry criteria for quantum simulability of

effective interactions, Phys. Rev. A 92, 042309 (2015). R. Zeier, Z. Zimborás, On squares of representations of
compact Lie algebras, J. Math. Phys. 56, 081702 (2015).
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Mathematical tools (III): Dynkin’s classification of
irreducible Lie-subalgebras



Constructing complete Lie-subalgebra tables



Passive bosonic linear optics (I)

For d = 2 we define Lb = |Ψb〉〈Ψb|, where

|Ψb〉 =

N∑
k=0

(−1)k|Dk〉|DN−k〉 ∈ Hb ⊗Hb ,

and |Dk〉 are two-mode Dicke states.

THEOREM

Let V /∈ LOb be a gate acting on Hilbert space of N bosons in d modes
(with N 6= 6).
We have the following possibilities:

(i) If d > 2, then 〈LOb, V 〉 = U (Hb).

(ii) If d = 2 and [V ⊗ V,Lb] = 0, then

〈LOb, V 〉 = Hb = {U ∈ U (Hb)| [U ⊗ U,Lb] = 0 }.

(iii) If [V ⊗ V,Lb] 6= 0, then 〈LOb, V 〉 = U (Hb).



Passive bosonic linear optics (II)

Extensions of LOb for two modes and N 6= 6 particles.

When N - even, then Hb = 〈SO(Hb), exp(iφ)I〉 and we have no
transitivity for pure states;

When N - odd, then Hb = 〈USp(Hb), exp(iφ)I〉 and we have
transitivity for pure states;

Extra Hamiltonian Hin = n31 − n32 promotes LOb to Hb.



Passive fermionic linear optics

For d = 2N (half-filling) we define Lf = |Ψf 〉〈Ψf |, where

|Ψf 〉 = |1〉 ∧ |2〉 ∧ . . . ∧ |2N〉 ∈ Hf ⊗Hf .

Theorem

Let V /∈ LOf be a gate acting on Hilbert space of N fermions in d
modes. We have the following possibilities:

(i) If d 6= 2N , then 〈LOf , V 〉 = U (Hf ).

(ii) If d = 2N and V = Wg, for g ∈ LOf and W =
∏d

i=1(ai + a†i ),
then

〈LOf , V 〉 = LOf ∪ LOf ·W .

(iii) If d = 2N , V 6= gW , for g ∈ LOf , and [V ⊗ V,Lf ] = 0, then

〈LOf , V 〉 = Hf = {U ∈ U (Hf )| [V ⊗ V,Lf ] = 0 }.

(iv) If d = 2N and [V ⊗ V,Lf ] 6= 0, then 〈LOf , V 〉 = U (Hf ).



Passive fermionic linear optics

Extensions of LOf for the case of half-filling N = d/2.

When N - even, then Hf = 〈SO(Hf ), exp(iφ)I〉 and we have no
transitivity for pure states;

When N - odd, then Hf = 〈USp(Hf ), exp(iφ)I〉 and we have
transitivity for pure states;

An extra Hamiltonian with correlated hopping terms

H ′in =
∑

j i
(
ajnj+1a

†
j+2 − h.c

)
promotes LOf to Hf .



Generic two-qubit gate decomposition



Generic three-qubit gate decomposition



Decomposition of generic gate sets
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