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Recent buzz around quantum computing

@ Quantum Computing is very popular nowadays:

o Everybody talks about this
from the Canadian Prime Minister to EU officials.

o Recent Nobel prize given to related research (Haroche,
Wineland).

o Many physicists specializing in this field get jobs in
Multinational Companies.

o EU Quantum Technology Flagship, US Quantum Technology
Strategy.



Google created already two types of Quantum
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Lots of quantum start-ups
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Early opinions

QuANTUM COMPUTING:
DREAM OR NIGHTMARE?

he principles of quantum
computing were laid out

Recent experiments have deepened our o interacting qubits: a “con-

trol” bit and a “target” bit

about 15 years ago by com- insight into the wonderfully THe. amtre] FEmals
puter scientists applying the  counterintuitive quantum theory. But  changed, but its state deter-

superposition principle of
quantum mechanics to com-

are they really harbingers of quantum

mines the evolution of the tar-
get: If the control is 0,

puter operation. Quantum computing? We doubt it. nothing happens to the target;

computing has recently be-
come a hot topic in physics,

if it is 1, the target undergoes
a well-defined transformation

with the recognition that a  Serge Haroche and Jean-Michel Raimond Quantum mechanics ad-

two-level system can be pre-

sented as a quantum bit, or

“qubit,” and that an interaction between such systems
could lead to the building of quantum gates obeying
nonclassical logic. (See PHYSICS TODAY, October 1995, page
24 and March 1996, page 21.)

mits additional options. If
the control is in some coher-
ent superposition of 0 and 1, the output of the gate is
entangled. That is to say, the two qubits are strongly
correlated in a nonseparable state, analogous to the par-
ticle pairs of the Einstein-Podolsky-Rosen paradox. The



brothers. How can we get kids ex-
cited about becoming scientists, engi-
neers, or technological entrepreneurs
if they are taught a form of history in
which role models are removed?
Under the Dole administration, I
look forward to working with you in
an era where good science will be
consistently supported.
ROBERT J. DOLE
Washington, DC

Future of Quantum
Computing Proves
to Be Debatable

In presenting their opinions in the
article “Quantum Computing:
Dream or Nightmare?” (August, page
51), Serge Haroche and Jean-Michel
Raimond conclude that large-scale
quantum computation will remain
merely a dream of computer theo-
rists. Their principal argument is
that, for a quantum computer to be

Early opinions

would be useful only if R is of order
10", or that any application requiring
more than 3 x 10° optical operations
would be fundamentally disallowed.

Experimentally, our laboratory has
demonstrated a “controlled-NOT”
quantum logic gate with a single
trapped ion,* following the ideas of Ig-
nacio Cirac and Peter Zoller.® (See
PHYSICS TODAY, March, page 21.) In
the experiment, R was about 10! and
the gate time was about 50 s. How-
ever, as is often the case in experi-
mental physics, this apparatus was
assembled with the least effort neces-
sary to exhibit the desired behavior
and should not be taken to represent
the technological limit. Although the
task of scaling this system to large
numbers of ions and gates involving
massively entangled quantum states
is daunting, the pitfalls are technical,
not fundamental.

It is too early to make absolute as-
sertions regarding the viability of
quantum computation when such a
large degree of uncertainty in both



Early opinions
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Early opinions

A harmadik évezred elején azonban a kvantumszdmitégép egy mesebeli
eszkoz, 1étez6 néhany qubites modellekkel. A mese az elméleti kvantum-
szamitastudomany; a 1étez6 kisérleti valdsdg annyiféle, ahanyféle mdédon
kétallapoti koherens rendszereket definidlni és néhany szdmolasi 1épésen ke-
resztiil koherensnek tartani képesek vagyunk. A tovabblépés azért hihetet-
leniil nehéz, mert az 6sszefondddsba kéretlen partnerként belép a kornyezet,



The (trivial) emerging technology hype

Emerging Technology Hype Cycle
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Feynman's question and vision

)

Intenatonal Journa o heoreical Physic, Vo, 21, Nes. 6/7, 1982

Simulating Physics with Computers
Richard P. Feynman
Deparment s Physics Cafoia It of ekl Pesaden, Coforia 1107

Reccioed May 7, 1981

1. INTRODUCTION

n the program it says this is a keynote specch—and I don't know

suggested that nobody would

talk about. I want (o talk about the problem of simulating physics with

computers and I mean that in a specific way which I am going to explain.

The reason for doing this is something that I learned about from Ed

Fredin, and my entire interes in the subject has been inspired by him. I
the

. Feynman

locaty of rscion. 1 would st Kk 0 ok of 45 spormccs
computer with arbitrary inter throughout the entire thi
Now, what kind of physics are we going (o imitate? an, Tam going o
describe the possibility of simulating physics in the classical
a thing which is usully described by local differential K micun Bl
lem i

There s, of course, a kind of approximate simulation in which you design
numerical algorithms for differential equations, and then use the computer
to compute these algorithms and get an approximate view of what physics
ougt to do Thars an nkaraing i bt ot what 1 want 1o lk
about. I want to talk about the possibility that there is to be an exact
simulation, that the computer il do exactly the same as nature. If this is to
be proved and the type of computer is as I've already explained, then it’s
g0ing 10 be necessary that everything that happens in a finite volume of
space and time would have to be exactly analyzable with a finite number of
logical peraions. Theprset thooryof pysice s sl hat way, sppasely
It allows space to go down into infinitesimal distances, wavelengths t0 get
infinitely great, terms 10 be summed in infinite order, and so forth; and
therefore, if this proposition is right, physical law is wrong.
we already have a suggestion of how we ‘modify
‘physical law, and that is the kind of reason why I like 10 study this sort of
problem. To take an example, we might change the idea that space is
continuous to the idea that space perhaps is a simple latice and everything
we can put it into a digits) and that time
e whe Hiod o 4 plchl il ¥ vl

has 1o do with computers, and
know all
180 Pyl s eraly, of oo o 't o o pay any atieation to
‘computers. I1s interesting anyway o entertain oneself with the idea that
we've got something o learn about physical laws; and if I take a relaxed
view here (after all 'm here and not at home) 'l admit that we don't
understand ing.

‘The first question is, What kind of computr arc we oing (0 e (o
simulate physics? Computer theory has been fo £ pot wers

velizes (hat it doss't make any dillrene: whe you ot 1

computer . doesn't mater how i's mamfactured, how is scnaly made
‘Therefore my question is, Can physics be simulated by a universal com-
putert 1 would ke 1o have the clements o tis computr oally ineron-
nected, and therefore sort of think about cellular automata as an example
(bt T o't wan t Toee 1. B 1 o wat something involved with the

be or what kind of problem of computation we would have. For example,
the first difficulty that would come out is that the speed of light would
depend slightly on the direction, and there might be other anisotropies in
the physics that we could detect experimentally. They might be very small
anisotropies. Physical knowledge is of course always incomplete, and you

can always say we'l ry to dmp ‘something which beats experiment at the
present time, but ‘anistropies on some scale 10 be found later.
That's fine. That would be .pod physics if you could predict something
consistent with all the known facts and suggest some new fact that we did't
cxplan, but v 0 specifc camyle. o Fim sl oo o the fct

lithium atom which shows that the anistropy is less than that much, and
that this here theory of yours is impossible.

You cannot even describe the state of 100 quantum dipole
moments (spins) with any future classical computer. What should
we do?



Feynman's question and vision

Richard Feynman (1981): »

“...trying to find a computer simulation of
physics, seems to me to be an excellent
program to follow out...and I'm not happy with
all the analyses that go with just the classical
theory, because nature isn't classical, dammit,
and if you want to make a simulation of
nature, you'd better make it quantum
mechanical, and by golly it's a wonderful
problem because it doesn't look so easy.”

"How can you simulate the quantum mechanics? ... Can you do it with a new
type of computer - a quantum computer? It is not a Turing machine, but a
machine of a different kind".



Feynman's question and vision

Richard Feynman (1981):

“...trying to find a computer simulation of
physics, seems to me to be an excellent
program to follow out...and I'm not happy with
all the analyses that go with just the classical
theory, because nature isn't classical, dammit,
and if you want to make a simulation of
nature, you'd better make it quantum
mechanical, and by golly it's a wonderful
problem because it doesn't look so easy.”

"How can you simulate the quantum mechanics? ... Can you do it with a new
type of computer - a quantum computer? It is not a Turing machine, but a
machine of a different kind".

This opened the way for the idea of quantum algorithms (Deutsch
'85, Deutsch-Jozsa '87, Bernstein-Vazirani '88, Shor '94)



Bernstein-Vazirani Algorithm

Input (query)
Xpa1 Xy Xo

Secret Bitstring S Sy So

Output (result) o A Py
— ITn—-15p-1 @ ... © T181 © ToSo




Bernstein-Vazirani Algorithm

Oracle

Input (query)
Xn-1 Xy Xo

Secret Bitstring Sai S So

Output (result) g . e
—_— Tp-15n-1D ... 7181 @ Z0So




Bernstein-Vazirani Algorithm

Oracle

Input (query)
Xn-1 Xy Xo

Secret Bitstring Sai S So

Output (result) g . e
—_— Tp-15n-1D ... 7181 @ Z0So

optimal classical strategy: n tries



Bernstein-Vazirani Algorithm

The general hope of quantum computing

) |z)

[tmp) — — |z.s & tmp)

the (naive) quantum parallelism

Quantum
P |
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Bernstein-Vazirani Algorithm

The Quantum Oracle

|z)

[tmp)




Bernstein-Vazirani Algorithm

Creating a uniform superpositions
with Hadamard Gates

10y 1041 IN BINARY
. V2 _ | 000) + | 001) + | 010) + | 011) +

‘:_31?{ +]100) 4+ | 101) + | 110) 4 | 111} }

10) . o P IREICEIRER

=IEL H+HI5)FI6)+IT)
[0) . |_n)\/ﬂ§_11 IN DECIMAL
n qubit computational qubit basis: n qubit Hadamard:
21) @ |22) @ |23} ® - ® |2 1 2t
‘ > | ) |"3> . . | n) H®n\33)= Z (~ 1)yq‘|y>
|z) z € {0,1}" nbitstring No

|z) ze€{0,1,2,...,2" -1}



Bernstein-Vazirani Algorithm

Wherever there’s CNOT, phase kickback
puts that control qubit in state | 1>.

8 ——

A

resulty 1
result; 0

result) 1
resulty 1




Finding the prime factors of integers is hard

@ The most popular public-key cryptosystem, the RSA
(Rivest-Shamir-Adleman) encryption, which was developed
already in 1978, uses the observation that multiplying integers
is easy, factoring integers into  prime factors is hard.

@ For example, let us have a look at the factors of the following
232 decimal digits (768 bits) number

RSA-768 = 12301866845301177551304949583849627207728535695953347921973224521517264005
07263657518745202199786469389956474942774063845925192557326303453731548268
50791702612214291346167042921431160222124047927473779408066535141959745985
6902143413

RSA-768 = 33478071698956898786044169848212690817704794983713768568912431388982883793
878002287614711652531743087737814467999489
36746043666799590428244633799627952632279158164343087642676032283815739666

x



The RSA Factoring Challenge

e What about the following 230 decimal digits (762 bits)
number?

RSA-232 = 1009881397871923546909564894309468582818233821955573955141120516205831021338
5285453743661097571543636649133800849170651699217015247332943892702802343809
6090980497644054071120196541074755382494867277137407501157718230539834060616
2079

RSA number | Dacml dighs | Binary ighs | Cash prize offered | Factoredon

Roa00 100 :|:\o Usstoo0t | ppn 1, 1o a0 |20 .
Reato |10 £ Ussas2ot pon 14, 19020 a0 | s
Roat20 | 4 ss000) iy, 10890 Ao | 10at
Poat207 |12 £ suous hon 25, 1004 Foatoas | e swooous
Roat |0 ) Uss1eszr pon 10,199 a0 30 o
Roa0 |10 - Ussizazs  Foomayz 1000 a0 w0 o6t
Rents0 10 - ot 10,2000 a0 (w0 1000
Roiss s 2 sazust 22, 1590 Az |0 e
Roie0 180 - o1, 200 e ot
Reainof | 1m0 £ Decare 29,2000 %0 % o
Roasns s 0 $10000Us0  Doconber, 200 o a0 var
Fsa107 | 10 £ Noariars, 10 a0 =0 124
Roaso |1 ) 000U Normoer2, 205 a0 w0 27
Rea20"? 20 ) .05 Fsaso 410 0
Asa20f 210 s Separmon 28, 20150 o @ £
A o o wyzane a0 @0 a7
Roz0l |z 2 Moy 13,2015 5 60, Gouy A Knopa, € Tromé s Zimmarmam  RSA440 440 oo
oAz |z ™ a0 40 s
RoaTell |z . S0000USD | Docamver 12,2009 | Thorsen Kk st Peaiss w0 s ss0o0us0
Roaz0 |20 s a0 e 155
Roaz0 |20 0 a0 w0 e
Roaz |z s Fas0 |0 s
moass 2 s srsamuso s £
Roaa |20 o Foaxs o1 e smooous



Shor's Algorithm

An algorithm to factor numbers
1. Pick a random number a < N.
2. Compute ged(a,N), the greatest common divisor of a and N.

3. If ged(a,N)=1, then this number is a nontrivial factor of N, so
we are done.

4. Otherwise, use a period-finding subroutine to find r which
denotes the period of the following function:

f(x) =a*mod N

5. If ris odd, or a to the power of r/2 gives N-1 modulo N, then
go back to step 1.

6. Otherwise, we have a nontrivial factor of N:

ged(a” = 1,N) ged(@” + 1,N)



Shor's Algorithm

Modular multiplication and period finding

nH = 7 = |4 - [13) — 1)
2) — [14) — [8) — [11) — |2)

Multiplication by 7 modulo 15

72 = 4 (mod 15)
7 = 4.-7=13 (mod 15)
74 = 13.7=1 (mod 15)

gcd(a”z— 1,N) gcd(ar’2 +1,N)



Shor's Algorithm
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Shor's Algorithm
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Shor's Algorithm

1andilla
qubit

— i

encoded |
register

11° mod 15 117 mod 15 11" mod 15
D
T 0 -E-EHEE -y BHEHEH
y =
- B
13
& o
— =im =]
2,7,813°mod 15 {2,7,8,13) mod 15 {2,7,8,13} mod 15
E g
2' mod 15 7' mod 15 81 mod 15 11" mod 15 13" mod 15



Random bosonic circuits (1)

Precision (p=7)
a - SQL_ qr,
e K, |

Universal extensions of bosonic linear optics can be used to generate

random bosonic circuits which generate states useful in quantum
computing and quantum metrology?.

M.0, R. Augusiak, C. Gogolin, J. Kotodyriski, A. Acin, and M. Lewenstein
Phys. Rev. X 6, 041044 (2016)




Random bosonic circuits (II)

@ Can states mimicking the properties of Haar-random states on H; be
generated efficiently?

Construction of the universal set of gates in #;:
@ Three linear gates generating whole linear optics [Sarnak 1986]

1 /1 2 1 /(1 -2
we e )G )
1 (142 0
VS‘E( 0 1722')’

@ Supplement this set of gates by cross-Kerr like transformation
VCK :eXp(*i%nlng).

IQ

Iw'

¢0§ L[l:L{2:L{3 oo Z/{K_bil/)zv

In each step the gate U; is chosen uniformly at random from a possibly
universal gate-set. Is this universal?



Basic problem (1)

@ Transformations allowed to perform on a quantum system
belong the unitary group U(#), where # - Hilbert space of
the system.



Basic problem (1)

@ Transformations allowed to perform on a quantum system

belong the unitary group U(#), where # - Hilbert space of
the system.

@ Full controllability: ability to perform any U € U(H).



Basic problem (1)

@ Transformations allowed to perform on a quantum system

belong the unitary group U(#), where # - Hilbert space of
the system.

@ Full controllability: ability to perform any U € U(H).

o Pure state controllability: ability to perform any U € U(H)
or U e USp(H).



Basic problem (1)

@ Transformations allowed to perform on a quantum system
belong the unitary group U(#), where H - Hilbert space of
the system.

o Full controllability: ability to perform any U € U(H).

o Pure state controllability: ability to perform any U € U(H)
or U € USp(H).

e Limited resources: only a subset G C U(H) is available.

U (H)




Basic problem (1)

In our works:

@ What gates can be generated when G is supplemented with
and additional gate V' ¢ G7

@ Physical scenarios considered: restricted gate sets for bosonic
and fermionic systems

U (#H)




Formal definition of universality

o A collection of quantum gates S C U(H) is called universal
in H iff every element U € U(H) can be approximated
arbitrarily well with elements U; € S:

Ve 3U;, € S such that |U — Uy, Us, -+ Us, || < €



Example 1: distinguishable particles

Hi Ho Hs Ha Hs

O0O00O0

o Local qubit gates LU = U(2) x U(2) x ... x U(2) plus any
entangling gate is universal in (C?)®V 2

2J. L. Brylinski and R. Brylinski, Math. Quant. Comp. 79 (2002)



Example 1: distinguishable particles

Hi Ho Hs Ha 5

OO0 OO0

o Local qubit gates LU = U(2) x U(2) x ... x U(2) plus any
entangling gate is universal in (C?)®V 2

o Clifford gates (important for quantum error-correction) are
universal in (C2)®Y when supplemented with any extra gate.3

2J. L. Brylinski and R. Brylinski, Math. Quant. Comp. 79 (2002)
3G. Nebe et al., Designs, Codes and Cryptography 24, 99 (2001)



Example 1: distinguishable particles

Hi Ho Hs Hy

O0OOO

o Local qubit gates LU = U(2) x U(2) x ... x U(2) plus any
entangling gate is universal in (C?)®V 2

o Clifford gates (important for quantum error-correction) are
universal in (C2)®V, when supplemented with any extra gate.>

OUR WORK: Analogous analysis for non-distinguishable particles

2J. L. Brylinski and R. Brylinski, Math. Quant. Comp. 79 (2002)
3G. Nebe et al., Designs, Codes and Cryptography 24, 99 (2001)



SETTING

(A) N Bosons in d modes + passive linear optics

Hp, = Sym™(C?) , LO, = {U®N | U € U(d)} .

(B) N Fermions in d modes + passive linear optics

N
Hp=\(C, LOy ={U®N | U U(d)} .

(C) Fermions in d modes in the positive parity subspace
+ active fermionic linear optics

\_%J 2m

H;ock = @ /\((Cd) , FLO - pp. Bogoliubov transformations .

m=0



Problem studied

What gates can be generated when bosonic/fermionic linear optics
is supplemented with an additional gate V' ¢ L.O?

U(H)

v (LO, V) =?

The answer must depend on: type of particles, number of
modes and number of particles.




More general physical context and motivation

(A) Bosons: photonic linear optics*, interferometry and
metrology®.

(B) Passive fermionic linear optics: fermionic interferometry,
restricted model of quantum computation®.

(C) Active fermionic linear optics: restricted model of quantum
computation®, Ising anyons’.

4E. Knill, R. Laflamme, and G. J. Milburn, Nature 409, 46 (2001).
®V. Giovannetti, et al., Phys. Rev. Lett. 96, 010401 (2006)
®D. P. DiVincenzo and B. M. Terhal, Found. Phys. 35, 1967 (2005)
’S. Bravyi, Phys. Rev. A 73, 042313 (2006)
e 44



Mathematical detour (1): membership problems

@ Hamiltonian and group membership problem:

o Is there an efficient way to determine whether
iH € <iH1,iH2, R ’Z’Hn>Lie?

o Discrete case: {Uy,Us,...U,} set of unitaries; G is the
discrete (finite or infinite) group generated by this set. Is there
an efficient way of determining whether U € G?



Mathematical tools (I): simple symmetries

o For Unitary Gates:

o If there exists a non-trivial symmetry S, such that [S,U;] =0
for all {Uy,Us,..., Uy}, but [S,U] # 0, then U cannot be
generated.

@ For Hamiltonians:

o If there exists a non-trivial symmetry S, such that [S, H;] =0
for all {iH,,iHs,...,iH,}, but [S,iH] # 0, then ¢H cannot
be generated.

@ However, this is only a necessary, but not sufficient, condition.



Mathematical tools (II): higher-order symmetries

o For Unitary Gates:

o A non-trivial second-order symmetry S(*) on H®? or a
third-order symmetry S) on 7{®3 are operators that satisfy
[S®) U; @ U;] = 0and [S®),U; ® U; @ U] = 0 for all
{U1,Us,...,U,}.

o If for some n-th order symmetry [S("), U®"] #£ 0, then U
cannot be generated. However, only by checking it for
all n is this known to be a sufficient an necessary condition.




Mathematical tools (II): higher-order symmetries

o For Unitary Gates:

o A non-trivial second-order symmetry S(*) on H®? or a
third-order symmetry S) on 7{®3 are operators that satisfy
[S®) U; @ U;] = 0and [S®),U; ® U; @ U] = 0 for all
{U1,Us,...,U,}.

o If for some n-th order symmetry [S("), U®"] #£ 0, then U
cannot be generated. However, only by checking it for
all n is this known to be a sufficient an necessary condition.

o For Hamiltonians:
e Second-order and third-order symmetries:
[S®)iH, @ T+1®iH,] =0 and

[S®iH@IeI+1®iH,@1+1®liH,] =0 for all
{iHy,iHs, ... iH,}.




Mathematical tools (II): higher-order symmetries

o For Unitary Gates:

o A non-trivial second-order symmetry S(*) on H®? or a
third-order symmetry S) on 7{®3 are operators that satisfy
[S®) U; @ U;] = 0and [S®),U; ® U; @ U] = 0 for all
{U1,Us,...,U,}.

o If for some n-th order symmetry [S("), U®"] #£ 0, then U
cannot be generated. However, only by checking it for
all n is this known to be a sufficient an necessary condition.

@ For Hamiltonians:
e Second-order and third-order symmetries:
[S®)iH, @ T+1®iH,] =0 and
[S®iH@IeI+1®iH,@1+1®liH,] =0 for all
{iHy,iHs,...,iHy}.

o [SPH@T+T®iH|#0 < iH¢(iHy,. .. iHy)Lie
(morally).®

8Z. Zimbor3s, R. Zeier, T. Schulte-Herbrueggen, D. Burgarth, Symmetry criteria for quantum simulability of
effective interactions, Phys. Rev. A 92, 042309 (2015). R. Zeier, Z. Zimboras, On squares of representations of
compact Lie algebras, J. Math. Phys. 56, 081702 (2015).



Mathematical tools (IIl): Dynkin's classification of

irreducible Lie-subalgebras

TABLE VIIL. Irreducible simple subalgebras not maximal in su(dim), sp(dim/2), or so(dim).

Subalgebra Type Highest weight(s) Algebra Highest weight(s) dim
s+ 1" u (1,0,1,0,...,0),0,...,0,1,0, 1) sul€¢+1)/2]  (0,1,0,...,0),0,...,0,1,0)  3(“?
su¢+1" u (2,1,0,...,0),(0,...,0,1,2) sulé(e +3)/2+1] 0,1,0,...,0),0,...,0,1,0) 3%
su(2) o (6 2 (1,0) 7
su(6) o (0,1,0,1,0) sp(10) 0,1,0,...,0) 189
so(4k+3)¢ slo® (0, ...,0,m) so(4k-+4) ©,...,0,m,0),(0,...,0,0,m) ¢

50(9) o (1,0,0,1) s0(16) ©,...,0,1,0),(,...,0,0,1) 128
5p(3) o (0,2,0) sp(7) (0,1,0,0,0,0,0) 90
5p(3) s (02,1 sp(7) (0,0,1,0,0,0,0) 350
s0(10)  u  (0,1,0,1,0),(0,1,0,0,1) su(16) ©,0,1,0,...,0),(,...,0,1,0,0) 560
s0(12) o  (0,0,0,1,0,0) sp(16) 0,1,0,0,...,0) 495
so(12) s (0,0,1,0,1,0),(0,0,1,0,0,1)  sp(16) 0,0,1,0,...,0) 4928
3 u  (0,0,1,0,0,0),(0,0,0,0,1,0)  su(27) 0,1,0,0,0,...,0) 351

% u  (0,1,1,0,0,0),(0,1,0,0,1,00  su?7) 0,0,0,1,0,...,0 17550
& o (0,0,0,0,0,1,0) 5p(28) ©,1,0,...,0) 1539
L s (0,0,0,0,1,0,0) sp(28) 0,0,1,0,...,0) 27664
& o (0,0,0,1,0,0,0) 5p(28) 0,0,0,1,0,...,0) 365750
L s (0,1,1,0,0,0,0) 5p(28) (0,0,0,0,1,0,...,0) 3792096
o o (m0) $0(7) (m, 0,0) s (i)
>4

be>3.

°k>1,m > 1; but not k = m = 1 (corrected) as 50(7)Cs0(8)Csu(8).

9If (k+ 1)m is odd then s else o.
TS [/ comectad.

fm > 2.



Constructing complete Lie-subalgebra tables

ou(2)
[

su(2) —su(3)
[(1,0),(0, 1)],((2)]

su(2) —ep(2) —ou(d)

[(1,0,0),(0, 0, DL[(1, 0)L,I(3)]

au(2) —sp(3)
50(6)}§u(6)

su(3)

[(1,0,0,0, 0) (0,0,0,0, )], [(1,0,0)1, [(5)], [(1, 0, 0)],

[(2.0).(0.
5u(2) =g = s0(7) = 5u(T)

[{{1 1346, 1)}LI(L, 0, LI

su(2) —sp(4)
au[ﬁ] ]““‘s)

1,0)LI6)]

sn(’?)
(4L D) (47, 1), 11, o 0,171, 11,0,0,0),0,0,
1,0),(0,0,0, DL[(1, D1,[(0, 0, 1)]

su(2) «—sp(5)

50(5) —s0(10)
su(3) fsu(10)

su(4)

su(5)

({41, D149, B}, [(1,0,0,0, 0], [(9)],[(1,0,0,0, )],
[(0 2)] ((3,0).(0, 3)1,1(2, 0,0),(0, 0, 2)J,[(0, 1, 0, 0).

u(2)e

au(2)
s0(7) }u(n)
@ )
su(21)
su(6)

su(7)

{1, 1)3,4(20, DI, [{ (L, D)}, [(20)], [0, 1, O], [(2,0,
0)\ [(o,o) (0,5)),(2,0,0,0,0,(0,0,0,0,2)],[{(2, 1)},

su(2) —sp(12)
su(s) mnm)}w(u)
su(3)

[((‘ v} {(23 1))] [0, [(28)], 1141, 131, 11,0,
L LI 1.6

su(2) +—sp(13) }m(m

f —s0(26)

4L 11425, DI, L 1) 1L [(25)], {01 13 [(0,0,
0,1)]

su(2)
su(3)
82 4=50(7)

s0(27)
o J—su(?ﬂ
sp(4)

{1, 1)},{(26, DIL{{1, 1}, [(Zﬁ)] [(2.2)],
((2,0)1,[(0, 1, 0, )L, [{(1, 1)},{{6, 1}}]

[(2,0,0)],

su(2) —sp(14)
50(8) —s0(28)

su(3) -su(28)
su(7)

su(8)

e
w)}w;m;
su(3)

[((1 D} {(39, 1))] HU LG9,
(1,1,0,0),(0,0,

su(2) —ap(21)
W_Mm)}m
su(3)

[{{1, D}.{(41, 1}
0, DL(3,2).(2,3)]

m<zy~—w(zz)}
0(9) su(44)
$v(s):l-.w(«)
{41, D}.{(43, 1))] (L DH @3] HE DL (.0,
0,0)],((0,1,0,0,0

su(40)

(2L 1Y

{0 13, 10, [{{3, 1Y, [0, 0,

su(2)
o
ul
su(43)
e O
[{(L, D} {444, DY), ({2, DY), [(44)], [(0,1,0,0,0)]
((8,0).(0, 8)], [{(1,2)}.{(8, 2)}], [{{2, D}.{(8, D},
1(2,1,0),(0, 1, 2)1,((1,0,1,0),0, 1,0, )]
su(2)
sp(24
w(41} p(21)
su(7) ou(48)
Y



Passive bosonic linear optics (I)

For d = 2 we define Ly, = |U;, ) U;|, where

N
(W) = (—=1)*|IDp)[Dn—1) € Hy @ Hy
k=0

and |Dy) are two-mode Dicke states.

THEOREM

Let V' ¢ LO, be a gate acting on Hilbert space of IV bosons in d modes
(with N # 6).
We have the following possibilities:

(i) If d > 2, then (LOy, V) = U (Hy).
(i) Ifd=2and [V ® VL] =0, then

(LOy, V) = Hpy={U € U(H,y)|[U®U,Ly] =0 }.
(iii) If [V ® V,Ly] # 0, then (LO,, V) = U (Hs).

y




Passive bosonic linear optics (II)

Extensions of LO;, for two modes and NV # 6 particles.

© When N - even, then H, = (SO(Hs), exp(i¢)I) and we have no
transitivity for pure states;

@ When N - odd, then H, = (USp(Hy), exp(i¢)I) and we have
transitivity for pure states;

@ Extra Hamiltonian H;,, = n} — n3 promotes LO; to H,.




Passive fermionic linear optics

For d = 2N (half-filling) we define Ly = |[¥ ;XU f|, where
(W) =[1)AI2)A...A]2N) € Hy @ Hj.

Let V' ¢ LOy be a gate acting on Hilbert space of IV fermions in d
modes. We have the following possibilities:

(i) If d # 2N, then (LOs, V) = U (Hy).

(i) fd=2Nand V =Wy, for g € LOy and W = Hle(ai +al),
then

(LO¢, V) =LO;s ULOs - W .

(iii) fd=2N, V # gW, for g € LOy, and [V ® V,L¢] = 0, then

(LOs, V) =Hy ={U € U(Hy)| [V V,Ls] =0 }.




Passive fermionic linear optics

Extensions of LO; for the case of half-filling N = d/2.

U (Hy)

@ When N - even, then Hy = (SO(Hy), exp(i¢)I) and we have no
transitivity for pure states;

@ When N - odd, then Hy = (USp(Hy), exp(i¢)I) and we have
transitivity for pure states;

@ An extra Hamiltonian with correlated hopping terms
H = Zji (ajnj+1a;+2 — h.c) promotes LO to Hy.




Generic two-qubit gate decomposition

RS TSS
i ST SRS S ST
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Decomposition of generic gate sets

Solovay-Kitaev algorithm

Goal: Approximate unitaries by elements of dense subgroup G < U(N)
Basic idea: Successive refining of a “net” using commutators

[Image source: Nielsen/Chuang, CUP 2000]

Implementations:
* [Kitaev, Shen, Vyialyi, AMS 2002]: log3*® (1/¢) time, log3*%(1/€) length

* [Dawson, Nielsen, quant-ph/0505030]: log?7* (1/g) time, log>®’(1/¢) length
* [Harrow, Recht, Chuang, quant-ph/0111031]: non-constructive, log (1/¢) length
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