Reduction of a bi-Hamiltonian hierarchy on T*U(n)
to spin Ruijsenaars—Sutherland models

Consider the following hierarchy of evolution equations:

Q; = (ILFQ)j;, L=I[R(Q)(LF),L], for (Q,L) € Tregxiu(n), Vk €N.

L is an n x n Hermitian matrix, Q = diag(Q1,Q@»,...,Qn) is a diagonal
unitary matrix, and R(Q) is the dynamical r-matrix given below.

There is a gauge freedom in this system:

(Q,L) <= (mQn~t,nLn~1) vn € N(n) := Ntn(U(n)).
T he evolutional derivations of gauge invariant ‘observables’ commute

due to the CDYBE satisfied by the dynamical r-matrix: R(Q) := 0 on
the Cartan subalgebra gl(n,C)g < gl(n,C) and

R(Q) = %(AdQ—I—id)(AdQ—id)_l on gl(n,C) 1, (Ado(X) = QXQ~Y).

Plan: First, I exhibit a bi-Hamiltonian structure for this system. Then,
if time permits, I shall explain why I call it ‘spin Ruijsenaars—Sutherland
nierarchy’. For details, see arXiv:1908.02467 [math-ph]. Before turning
to all this, we recall some background material.



What is a bi-Hamiltonian system?

We have a classical phase space M, and the space of observables

F(M,R) carries two Poisson brackets { , }; and { , }» such that the

time evolution of any observable F' can be written alternatively as
F={F Hy{}, ={F,Ho}; with Hamiltonians H; and Ho.

T he two Poisson brackets are supposed to be compatible, which means
that any linear combination

A, Bt Ao, o
satisfies the Jacobi identity (A1 and X, are arbitrary constants).

Many classical integrable systems are bi-Hamiltonian. A basic fact is
that if the recursion (so called Magri—Lenard scheme)

{-,Hm}p={-,Hp4+1}1 say forall meN

holds, then {Hm,Hn}1 = {Hm,Hn}o> = 0. Hence we have a set of
commuting Hamiltonians. Under favourable circumstances, they are
part of an integrable Hamiltonian system.



The first example: Korteweg—de Vries (KdV) equation

Phase space: real functions on R with smoothness and boundary con-
ditions. Fundamental Poisson brackets: {u(z),u(y)}; = ¢ (z —y) and

(@), u(w)}2 = (82 + S(8 0 u(@) +u(x) 0 8: ) 6z — ).

The KdV equation, u; = uugz + uzzr for the classical ‘field’ u(x,t), is
bi-Hamiltonian

u(z) = {u(z), Ho}1 = {u(z), H1}>
with

(lu(:c)g’ — 111,3[;(:1:)2> dx

HQ[U]:/OO 6 2

— 00
and

Hq[u] = %/_O:O w(z)?dz.

One has the relations
o0
{’aHn—l}Q — {‘aHn}l (\V/TL: 0,1,2,...) H_l = O, Ho — 3/ u(a:)d:c
— OO

H, is the integral of a certain local density, Hn(u, uz, uzz, Uzzz, ... ).
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A well-known lemma about getting compatible Poisson brackets

Lemma. Let (2,{, }) be a Poisson algebra and D a derivation of the
underlying commutative algebra 2. Suppose that the bracket

{f,h}P :=D{f,h}] — {DIf], h} — {f, DIhl}
satisfies the Jacobi identity. Then the formula

{f h¥ag 0 = M {f R} 4 Xo{f, h}P
defines a Poisson bracket, for any constant parameters A1 and \».

Note: For any derivation D, the bracket { , },, \, is automatically anti-
symmetric and verifies the Leibniz property. It is a simple exercise to
verify the Jacobi identity by direct calculation.

The bi-Hamiltonian structures of the form above are called ‘exact’
when the application of D to { , }D gives zero.

For example, the first Poisson bracket of the KdV is the Lie derivative
of the second Poisson bracket by means of the derivation Dlu(x)] = %
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Recall celebrated exactly solvable many-body models

Trigonometric Sutherland system:

Hsyth = Z pk + = Z

y 5|n2(Qk q;)
Trigonometric Ruijsenaars—Schnelder system.

72

n 2 1
Hgrs = > (coshpg) |] [14— — ]2

=1 izl sin®(ar — ;)
Light-cone Hamiltonians of the RS system:

Hyi = znjeipkH[lJr - ]

k—1 j#Ek Slﬂ2(qk — q])
Describe integrable interactions of n points moving on the circle.

N|—

Generalize rational Calogero—Moser model of points on the real line:

2
Hen = +
™M = Z P g&:k (qx — g;)2




Bi-Hamiltonian hierarchy on 7T*U(n): We start with the manifold
M:=Un) xiu(n) :=={(g,L) | g € U(n),L € iu(n)}.
We use the real Lie algebra gl(n,C), equipped with the bilinear form
(X)) =Str(XY), VX,Y € gl(n,C),

and the real vector space decomposition (Manin triple)
gl(n,C) = u(n) + b(n)

with b(n) L= SpanR{Ejj,Ekl, iEkl | 1<53<n, 1<k<I< n}
This gives the decomposition X = Xu(n) —I—Xb(n) for every X € gl(n,C).
For a real function F € C*°(91), the derivatives

D1F,Di{F € C*(M,b(n)), doF € C®°(M,u(n)) are defined by

d
for all X, X’ €u(n) and Y € iu(n).

F(eXge!X'| L+tY) = (D1F(g, L), X)+ (D} F(g, L), X"V +(daF (g, L),Y)



Proposition 1. The following formulas define two Poisson brackets
on C°(M,R):

{F,H}1(g, L) = (D1F,doH) — (D1H,doF) 4+ (L, [doF, do H])
and
{F7 H}2(97L> — <D1F7 Ld2H> - <D1H7 Ld2F>
1
+2 (LdoF, (Ld2H) () — - (D1F, g (D1H)g)

where the derivatives are taken at the point (g, L).

Remark: The first bracket is the canonical Poisson bracket of the
cotangent bundle, expressed in terms of right-trivialization and tak-
ing iu(n) and b(n) as models of u(n)*. The restriction of the second
bracket to the open submanifold U(n) x exp(iu(n)) C 9t is a convenient
multiple of Semenov-Tian-Shansky’s non-degenerate Poisson bracket
on the Heisenberg double of the standard Poisson—Lie group U(n).

Remark: GL(n,C) > K = bLg}_%1 — ngﬁl — (gR,bRbE) c U(n) x exp(iu(n))}



Introduce the vector field D on 9t that acts as the following derivation
of the ‘coordinate functions’

Its flow through (¢g(0),L(0)) reads (g(t),L(t)) = (g(0),L(0) 4 t1,).

Proposition 2. For F € C°°(OM), let D[F] denote the derivative along
the vector field D. The Poisson brackets on C°°(9M) satisfy

{F,H}y = {F,H}5 = D[{F,H}5] — {D[F), H}> — {F, D[H]}2,
{F,H}T = D{F, H}1] - {D[F], H}; — {F,D[H]}; =0,
and thus they define an exact bi-Hamiltonian structure.
The Hamiltonians Hy(g, L) := £tr(L*) (Vk € N) satisfy

{F,Hp}o ={F,Hpy1}1
and induce the bi-Hamiltonian ‘free flows’

(9(t), L(£)) = (exp(itL(0)*)g(0), L(0)) .



Consider the following action of the group U(n) on 9:

An(g,L) = (ngn~*,nLn~1), vn € U(n), (g,L) € M.
One can show that the ring of invariant functions is closed under both
Poisson brackets.

Lemma 3. The Poisson brackets { , }1 and { , }o> on C°°(9M) induce
two compatible Poisson brackets on COO(EJJI)U(”).

Noting that Hy is U(n) invariant, we can perform Poisson reduction,i.e.,
take quotient by U(n). From now on we restrict our attention to the
dense open subset

mreg — U(?’L)reg X Iu(n)
Every U(n) orbit in 9Mreg contains representatives in the submanifold
S 1= Treg X iu(n) C Mreg (‘gauge slice’)

and this submanifold is preserved by the action of the normalizer, N'(n),
of T" in U(n). The embedding ¢ : Ty X iu(n) — Mreg vields the
identification

COO(imreg)U(”) ~ C%(Tyeg X iu(n))N(”) (‘restricted invariants’)



We obtain the reduced Poisson algebras (C@(T?eg x iu(n))N) [ }ged>:

(Fou,HoY® = {F HY;0. for F,HEC®(Meq) ™, i=1,2.
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Using R(Q) € End(gl(n,C)), introduce

X, Yr(o) = [RQ)X, Y]+ [X,R(Q)Y], VX,Y € gl(n,C).

For any f € C*°(Tyeq X iu(n)), we have the b(n)p-valued derivative D1 f
and the u(n)-valued derivative d>f:

d
(D1£(Q, L), X) +(d2f(Q, L), Y) = —|  f(eQ, L+#Y),

Theorem 4. For f,h € C®(Tfey X iu(n))N(  the reduced Poisson
brackets obey the explicit formulas

{£,R}°4UQ, L) = (D1f,dzh) — (D1h,dof) + (L, [daf, dohl (o)),

and
{f,h}54Q, L) = (D1f, Ldah) — (D1h, Ldao f) 4 2(Lda f, R(Q) (Ldzh)),
where the derivatives are evaluated at the point (Q,L).
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Theorem 5. The bi-Hamiltonian vector field Vi, on 9, given by

Vk[F] L= {F7 Hk}Q — {Fa Hk—|—1}17 k€N,

induces a derivation of C*°(Tfgqg X iu(n))N()  Up to infinitesimal gauge
transformations, this is given by the vector field Wy, on Tieq x iu(n) that
satisfies

QQ L :i=Wi[QIQ ™t = (iILM)giag, L := WilL] = [R(Q)(IL), L].

As derivations of N'(n)-invariant functions, f = Fo. and h;, = Hj o,
these reduced evolutional derivations obey

Wilfl = {f, he}50 = {f, by 1179

Summary: We have shown that Poisson reduction of the bi-Hamiltonian
hierarchy of ‘free motion’ on 9 = T*U(n) results in a bi-Hamiltonian
hierarchy describing the time development of the gauge invariant ob-
servables forming C°°(Tleqg X iu(n))N() . The reduced hierarchy is called
‘trigonometric spin Ruijsenaars—Sutherland hierarchy’.
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Interpretation as a spin Sutherland model (well-known): Introduce
new variables by the diffeomorphism:

Treg X iu(n) 3 (Q, L) <= (Q,p, ¢) € Treg X i(n)diag X in(n) |

using  L(@,p,8) = p— (R(Q) + 5id)(9).

The entries p; of pand g; in Q; = 'l form canonically conjugate pairs,
and are combined with the Poisson algebra of the quotient

u(n)*//oT" = (iu(n) | )/T"™. The space of physical observables becomes

C%(Tlhag X u(n)giag X u(n) )N M),
and the reduced first Poisson bracket takes the form

{F HYPUQ,p, ¢) = (DoF, dpH) — (DoH, dpF) + (¢, [dyF, dsH]).
In these variables, we get the standard spin Sutherland Hamiltonian
1 1 1 ;4|2
Ha(Q,p ) = S(L(Qp,0)*) = 530 + 2 3 — o
v i7=j SN 2 ’
T he spin variable ¢ can be restricted by fixing the values of the Casimir

functions C; € C®(u(n)*)Y(™) and a special choice gives the spinless
Sutherland model.
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Interpretation as a spin Ruljsenaars model: Restrict attention to
Treg X exp(iu(n)) C Treg X iu(n),
where L can be uniquely written in the form
L=ePby(by)leP with peb(n)g, by € exp(b(n)y) =: B(n),.
Then consider the invertible change of variables
(Q,L) +— (Q,p,by) +— (Q,p, MQ, b)) with A(Q,b4) = b1'Q 16,Q.

A varies freely in the triangular nilpotent subgroup B(n)4 < B(n). This
gives the identification

% (Thag x exp(iu(n)))" "

N(n
+—— C° (T?eg X b(n)g X B(”)—I—) ( ).

For F,H € C>°(Tfeg X b(n)o X B(n)+)N(”), the change of variables leads
to the ‘decoupled form’ of the second Poisson bracket:

Q{Faﬂ}ged(Qapa >‘) — <DQF7 de> - <DQ%7 dp]:> =+ <D/)\‘F7 >‘_1(D>\H)>‘>

The last term encodes the natural Poisson bracket on B(n)//qoT"™, which
is the Poisson-Lie analogue of u(n)*//qT™.
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In terms of these variables, the main Hamitonian tr(L) has the form

(L) = 3 2PV(Q,N) with Vi@, N) = (b4(Q Mb1(@, )

i1’
i=1
and thus the reduced system can be interperted as a spin RS model.
The corresponding open subset of the reduced phase space is

(TYeg x b(n)o x (B(n)4/T™)) /Sh.

We obtain Poisson subspaces by restricting B(n)4/T" to T"-reduced
dressing orbits of U(n). The dressing orbits O ¢ B(n) are obtained by
fixing the Casimirs, C; € C°(B(n))Y("). The smallest non-trivial dress-
ing orbit gives the standard spinless, trigonometric (real) RS model.

e Outstanding open question: How to obtain the standard spinless, hyperbolic
(real, repulsive) RS model by Hamiltonian reduction?
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