Reduction of a bi-Hamiltonian hierarchy on $T^{*} \mathrm{U}(n)$ to spin Ruijsenaars-Sutherland models

László Fehér, University of Szeged and Wigner RCP, Budapest

Consider the following hierarchy of evolution equations:
$\dot{Q}_{j}=\left(\mathrm{i} L^{k} Q\right)_{j j}, \quad \dot{L}=\left[\mathcal{R}(Q)\left(\mathrm{i} L^{k}\right), L\right], \quad$ for $\quad(Q, L) \in \mathbb{T}_{\text {reg }}^{n} \times \mathfrak{i u}(n), \forall k \in \mathbb{N}$.
L is an $n \times n$ Hermitian matrix, $Q \equiv \operatorname{diag}\left(Q_{1}, Q_{2}, \ldots, Q_{n}\right)$ is a diagonal unitary matrix, and $\mathcal{R}(Q)$ is the dynamical r-matrix given below.

There is a gauge freedom in this system:

$$
(Q, L) \Longleftrightarrow\left(\eta Q \eta^{-1}, \eta L \eta^{-1}\right) \quad \forall \eta \in \mathcal{N}(n):=N_{\mathbb{T}^{n}}(\mathrm{U}(n))
$$

The evolutional derivations of gauge invariant 'observables' commute due to the CDYBE satisfied by the dynamical r-matrix: $\mathcal{R}(Q):=0$ on the Cartan subalgebra $\mathfrak{g l}(n, \mathbb{C})_{0}<\mathfrak{g l}(n, \mathbb{C})$ and
$\mathcal{R}(Q):=\frac{1}{2}\left(\operatorname{Ad}_{Q}+\mathrm{id}\right)\left(\mathrm{Ad}_{Q}-\mathrm{id}\right)^{-1}$ on $\mathfrak{g l}(n, \mathbb{C})_{\perp}, \quad\left(\operatorname{Ad}_{Q}(X):=Q X Q^{-1}\right)$.
Plan: First, I exhibit a bi-Hamiltonian structure for this system. Then, if time permits, I shall explain why I call it 'spin Ruijsenaars-Sutherland hierarchy'. For details, see arXiv:1908.02467 [math-ph]. Before turning to all this, we recall some background material.

What is a bi-Hamiltonian system?

We have a classical phase space M, and the space of observables $\mathcal{F}(M, \mathbb{R})$ carries two Poisson brackets $\{,\}_{1}$ and $\{,\}_{2}$ such that the time evolution of any observable F can be written alternatively as

$$
\dot{F}=\left\{F, H_{1}\right\}_{2}=\left\{F, H_{2}\right\}_{1} \quad \text { with Hamiltonians } H_{1} \text { and } H_{2}
$$

The two Poisson brackets are supposed to be compatible, which means that any linear combination

$$
\lambda_{1}\{,\}_{1}+\lambda_{2}\{,\}_{2}
$$

satisfies the Jacobi identity (λ_{1} and λ_{2} are arbitrary constants).

Many classical integrable systems are bi-Hamiltonian. A basic fact is that if the recursion (so called Magri-Lenard scheme)

$$
\left\{\cdot, H_{m}\right\}_{2}=\left\{\cdot, H_{m+1}\right\}_{1} \quad \text { say for all } \quad m \in \mathbb{N}
$$

holds, then $\left\{H_{m}, H_{n}\right\}_{1}=\left\{H_{m}, H_{n}\right\}_{2}=0$. Hence we have a set of commuting Hamiltonians. Under favourable circumstances, they are part of an integrable Hamiltonian system.

The first example: Korteweg-de Vries (KdV) equation

Phase space: real functions on \mathbb{R} with smoothness and boundary conditions. Fundamental Poisson brackets: $\{u(x), u(y)\}_{1}=\delta^{\prime}(x-y)$ and

$$
\{u(x), u(y)\}_{2}=\left(\partial_{x}^{3}+\frac{1}{3}\left(\partial_{x} \circ u(x)+u(x) \circ \partial_{x}\right) \delta(x-y)\right.
$$

The KdV equation, $u_{t}=u u_{x}+u_{x x x}$ for the classical 'field' $u(x, t)$, is bi-Hamiltonian

$$
\dot{u}(x)=\left\{u(x), H_{2}\right\}_{1}=\left\{u(x), H_{1}\right\}_{2}
$$

with

$$
H_{2}[u]=\int_{-\infty}^{\infty}\left(\frac{1}{6} u(x)^{3}-\frac{1}{2} u_{x}(x)^{2}\right) d x
$$

and

$$
H_{1}[u]=\frac{1}{2} \int_{-\infty}^{\infty} u(x)^{2} d x
$$

One has the relations

$$
\left\{\cdot, H_{n-1}\right\}_{2}=\left\{\cdot, H_{n}\right\}_{1}(\forall n=0,1,2, \ldots) H_{-1}=0, H_{0}=3 \int_{-\infty}^{\infty} u(x) d x
$$

H_{n} is the integral of a certain local density, $\mathcal{H}_{n}\left(u, u_{x}, u_{x x}, u_{x x x}, \ldots\right)$.

A well-known lemma about getting compatible Poisson brackets

Lemma. Let $(\mathfrak{A},\{\}$,$) be a Poisson algebra and \mathcal{D}$ a derivation of the underlying commutative algebra \mathfrak{A}. Suppose that the bracket

$$
\{f, h\}^{\mathcal{D}}:=\mathcal{D}[\{f, h\}]-\{\mathcal{D}[f], h\}-\{f, \mathcal{D}[h]\}
$$

satisfies the Jacobi identity. Then the formula

$$
\{f, h\}_{\lambda_{1}, \lambda_{2}}=\lambda_{1}\{f, h\}+\lambda_{2}\{f, h\}^{\mathcal{D}}
$$

defines a Poisson bracket, for any constant parameters λ_{1} and λ_{2}.

Note: For any derivation \mathcal{D}, the bracket $\{,\}_{\lambda_{1}, \lambda_{2}}$ is automatically antisymmetric and verifies the Leibniz property. It is a simple exercise to verify the Jacobi identity by direct calculation.

The bi-Hamiltonian structures of the form above are called 'exact' when the application of \mathcal{D} to $\{,\}^{\mathcal{D}}$ gives zero.

For example, the first Poisson bracket of the KdV is the Lie derivative of the second Poisson bracket by means of the derivation $\mathcal{D}[u(x)]=\frac{3}{2}$.

Recall celebrated exactly solvable many-body models

Trigonometric Sutherland system:

$$
H_{\text {Suth }}=\frac{1}{2} \sum_{k=1}^{n} p_{k}^{2}+\frac{1}{2} \sum_{j \neq k} \frac{x^{2}}{\sin ^{2}\left(q_{k}-q_{j}\right)}
$$

Trigonometric Ruijsenaars-Schneider system:

$$
H_{\mathrm{RS}}=\sum_{k=1}^{n}\left(\cosh p_{k}\right) \prod_{j \neq k}\left[1+\frac{x^{2}}{\sin ^{2}\left(q_{k}-q_{j}\right)}\right]^{\frac{1}{2}}
$$

Light-cone Hamiltonians of the RS system:

$$
H_{ \pm}=\sum_{k=1}^{n} e^{ \pm p_{k}} \prod_{j \neq k}\left[1+\frac{x^{2}}{\sin ^{2}\left(q_{k}-q_{j}\right)}\right]^{\frac{1}{2}}
$$

Describe integrable interactions of n points moving on the circle.
Generalize rational Calogero-Moser model of points on the real line:

$$
H_{\mathrm{CM}}=\frac{1}{2} \sum_{k=1}^{n} p_{k}^{2}+\frac{1}{2} \sum_{j \neq k} \frac{x^{2}}{\left(q_{k}-q_{j}\right)^{2}}
$$

Bi-Hamiltonian hierarchy on $T^{*} \mathrm{U}(n)$: We start with the manifold

$$
\mathfrak{M}:=\mathrm{U}(n) \times \mathfrak{i} \mathfrak{u}(n):=\{(g, L) \mid g \in \cup(n), L \in \mathfrak{i} \mathfrak{u}(n)\}
$$

We use the real Lie algebra $\mathfrak{g l}(n, \mathbb{C})$, equipped with the bilinear form

$$
\langle X, Y\rangle:=\Im \operatorname{tr}(X Y), \quad \forall X, Y \in \mathfrak{g l}(n, \mathbb{C})
$$

and the real vector space decomposition (Manin triple)

$$
\mathfrak{g l}(n, \mathbb{C})=\mathfrak{u}(n)+\mathfrak{b}(n)
$$

with $\quad \mathfrak{b}(n):=\operatorname{span}_{\mathbb{R}}\left\{E_{j j}, E_{k l}, \dot{\mathrm{i}} E_{k l} \mid 1 \leq j \leq n, 1 \leq k<l \leq n\right\}$.
This gives the decomposition $X=X_{\mathfrak{u}(n)}+X_{\mathfrak{b}(n)}$ for every $X \in \mathfrak{g l}(n, \mathbb{C})$. For a real function $F \in C^{\infty}(\mathfrak{M})$, the derivatives

$$
\begin{aligned}
& \quad D_{1} F, D_{1}^{\prime} F \in C^{\infty}(\mathfrak{M}, \mathfrak{b}(n)), d_{2} F \in C^{\infty}(\mathfrak{M}, \mathfrak{u}(n)) \quad \text { are defined by } \\
& \left.\frac{d}{d t}\right|_{t=0} F\left(e^{t X} g e^{t X^{\prime}}, L+t Y\right)=\left\langle D_{1} F(g, L), X\right\rangle+\left\langle D_{1}^{\prime} F(g, L), X^{\prime}\right\rangle+\left\langle d_{2} F(g, L), Y\right\rangle \\
& \text { for all } X, X^{\prime} \in \mathfrak{u}(n) \text { and } Y \in \mathfrak{i u}(n) .
\end{aligned}
$$

Proposition 1. The following formulas define two Poisson brackets on $C^{\infty}(\mathfrak{M}, \mathbb{R})$:

$$
\{F, H\}_{1}(g, L)=\left\langle D_{1} F, d_{2} H\right\rangle-\left\langle D_{1} H, d_{2} F\right\rangle+\left\langle L,\left[d_{2} F, d_{2} H\right]\right\rangle
$$

and

$$
\begin{aligned}
& \{F, H\}_{2}(g, L)=\left\langle D_{1} F, L d_{2} H\right\rangle-\left\langle D_{1} H, L d_{2} F\right\rangle \\
& \quad+2\left\langle L d_{2} F,\left(L d_{2} H\right)_{\mathfrak{u}(n)}\right\rangle-\frac{1}{2}\left\langle D_{1}^{\prime} F, g^{-1}\left(D_{1} H\right) g\right\rangle
\end{aligned}
$$

where the derivatives are taken at the point (g, L).

Remark: The first bracket is the canonical Poisson bracket of the cotangent bundle, expressed in terms of right-trivialization and taking $\mathfrak{i u}(n)$ and $\mathfrak{b}(n)$ as models of $\mathfrak{u}(n)^{*}$. The restriction of the second bracket to the open submanifold $U(n) \times \exp (i \mathfrak{u}(n)) \subset \mathfrak{M}$ is a convenient multiple of Semenov-Tian-Shansky's non-degenerate Poisson bracket on the Heisenberg double of the standard Poisson-Lie group $\mathbf{U}(n)$.
$\left[\right.$ Remark: $\left.\operatorname{GL}(n, \mathbb{C}) \ni K=b_{L} g_{R}^{-1}=g_{L} b_{R}^{-1} \mapsto\left(g_{R}, b_{R} b_{R}^{\dagger}\right) \in \mathrm{U}(n) \times \exp (\mathfrak{i u}(n))\right]$

Introduce the vector field \mathcal{D} on \mathfrak{M} that acts as the following derivation of the 'coordinate functions'

$$
\mathcal{D}\left[g_{i j}\right]:=0, \quad \mathcal{D}\left[L_{i j}\right]:=\delta_{i j} .
$$

Its flow through $(g(0), L(0))$ reads $(g(t), L(t))=\left(g(0), L(0)+t 1_{n}\right)$.

Proposition 2. For $F \in C^{\infty}(\mathfrak{M})$, let $\mathcal{D}[F]$ denote the derivative along the vector field \mathcal{D}. The Poisson brackets on $C^{\infty}(\mathfrak{M})$ satisfy

$$
\begin{gathered}
\{F, H\}_{1}=\{F, H\}_{2}^{\mathcal{D}} \equiv \mathcal{D}\left[\{F, H\}_{2}\right]-\{\mathcal{D}[F], H\}_{2}-\{F, \mathcal{D}[H]\}_{2} \\
\{F, H\}_{1}^{\mathcal{D}} \equiv \mathcal{D}\left[\{F, H\}_{1}\right]-\{\mathcal{D}[F], H\}_{1}-\{F, \mathcal{D}[H]\}_{1}=0
\end{gathered}
$$

and thus they define an exact bi-Hamiltonian structure.
The Hamiltonians $H_{k}(g, L):=\frac{1}{k} \operatorname{tr}\left(L^{k}\right)(\forall k \in \mathbb{N})$ satisfy

$$
\left\{F, H_{k}\right\}_{2}=\left\{F, H_{k+1}\right\}_{1}
$$

and induce the bi-Hamiltonian 'free flows'

$$
(g(t), L(t))=\left(\exp \left(\mathrm{i} t L(0)^{k}\right) g(0), L(0)\right)
$$

Consider the following action of the group $\mathrm{U}(n)$ on \mathfrak{M} :

$$
A_{\eta}(g, L)=\left(\eta g \eta^{-1}, \eta L \eta^{-1}\right), \quad \forall \eta \in \cup(n),(g, L) \in \mathfrak{M}
$$

One can show that the ring of invariant functions is closed under both Poisson brackets.

Lemma 3. The Poisson brackets $\{,\}_{1}$ and $\{,\}_{2}$ on $C^{\infty}(\mathfrak{M})$ induce two compatible Poisson brackets on $C^{\infty}(\mathfrak{M}) \cup(n)$.

Noting that H_{k} is $\mathrm{U}(n)$ invariant, we can perform Poisson reduction,i.e., take quotient by $\mathrm{U}(n)$. From now on we restrict our attention to the dense open subset

$$
\mathfrak{M}_{\text {reg }}:=\mathrm{U}(n)_{\text {reg }} \times \mathfrak{i} \mathfrak{u}(n)
$$

Every $\mathrm{U}(n)$ orbit in $\mathfrak{M}_{\text {reg }}$ contains representatives in the submanifold

$$
S:=\mathbb{T}_{\text {reg }}^{n} \times \mathfrak{i u}(n) \subset \mathfrak{M}_{\text {reg }} \quad \text { ('gauge slice') }
$$

and this submanifold is preserved by the action of the normalizer, $\mathcal{N}(n)$, of \mathbb{T}^{n} in $\mathcal{U}(n)$. The embedding $\iota: \mathbb{T}_{\text {reg }}^{n} \times \mathfrak{i u}(n) \rightarrow \mathfrak{M}_{\text {reg }}$ yields the identification

$$
C^{\infty}\left(\mathfrak{M}_{\text {reg }}\right)^{\cup(n)} \simeq C^{\infty}\left(\mathbb{T}_{\text {reg }}^{n} \times \mathfrak{i u}(n)\right)^{\mathcal{N}(n)} \quad(\text { 'restricted invariants') }
$$

We obtain the reduced Poisson algebras $\left(C^{\infty}\left(\mathbb{T}_{\text {reg }}^{n} \times \mathfrak{i u}(n)\right)^{\mathcal{N}(n)},\{,\}_{i}^{\text {red }}\right)$:

$$
\{F \circ \iota, H \circ \iota\}_{i}^{\text {red }}:=\{F, H\}_{i} \circ \iota \quad \text { for } \quad F, H \in C^{\infty}\left(\mathfrak{M}_{\text {reg }}\right)^{\cup(n)}, i=1,2
$$

Using $\mathcal{R}(Q) \in \operatorname{End}(\mathfrak{g l}(n, \mathbb{C}))$, introduce

$$
[X, Y]_{\mathcal{R}(Q)}:=[\mathcal{R}(Q) X, Y]+[X, \mathcal{R}(Q) Y], \quad \forall X, Y \in \mathfrak{g l}(n, \mathbb{C})
$$

For any $f \in C^{\infty}\left(\mathbb{T}_{\text {reg }}^{n} \times \mathfrak{i} u(n)\right)$, we have the $\mathfrak{b}(n)_{0}$-valued derivative $D_{1} f$ and the $\mathfrak{u}(n)$-valued derivative $d_{2} f$:

$$
\left\langle D_{1} f(Q, L), X\right\rangle+\left\langle d_{2} f(Q, L), Y\right\rangle=\left.\frac{d}{d t}\right|_{t=0} f\left(e^{t X} Q, L+t Y\right)
$$

Theorem 4. For $f, h \in C^{\infty}\left(\mathbb{T}_{\text {reg }}^{n} \times \mathfrak{i u}(n)\right)^{\mathcal{N}(n)}$, the reduced Poisson brackets obey the explicit formulas

$$
\{f, h\}_{1}^{\text {red }}(Q, L)=\left\langle D_{1} f, d_{2} h\right\rangle-\left\langle D_{1} h, d_{2} f\right\rangle+\left\langle L,\left[d_{2} f, d_{2} h\right]_{\mathcal{R}(Q)}\right\rangle,
$$

and

$$
\{f, h\}_{2}^{\text {red }}(Q, L)=\left\langle D_{1} f, L d_{2} h\right\rangle-\left\langle D_{1} h, L d_{2} f\right\rangle+2\left\langle L d_{2} f, \mathcal{R}(Q)\left(L d_{2} h\right)\right\rangle
$$

where the derivatives are evaluated at the point (Q, L).

Theorem 5. The bi-Hamiltonian vector field V_{k} on \mathfrak{M}, given by

$$
V_{k}[F]:=\left\{F, H_{k}\right\}_{2}=\left\{F, H_{k+1}\right\}_{1}, \quad k \in \mathbb{N}
$$

induces a derivation of $C^{\infty}\left(\mathbb{T}_{\text {reg }}^{n} \times \mathfrak{i u}(n)\right)^{\mathcal{N}(n)}$. Up to infinitesimal gauge transformations, this is given by the vector field W_{k} on $\mathbb{T}_{\text {reg }}^{n} \times \mathfrak{i u}(n)$ that satisfies

$$
\dot{Q} Q^{-1}:=W_{k}[Q] Q^{-1}=\left(\mathrm{i} L^{k}\right)_{\mathrm{diag}}, \quad \dot{L}:=W_{k}[L]=\left[\mathcal{R}(Q)\left(\mathrm{i} L^{k}\right), L\right]
$$

As derivations of $\mathcal{N}(n)$-invariant functions, $f=F \circ \iota$ and $h_{k}=H_{k} \circ \iota$, these reduced evolutional derivations obey

$$
W_{k}[f]=\left\{f, h_{k}\right\}_{2}^{\text {red }}=\left\{f, h_{k+1}\right\}_{1}^{\text {red }} .
$$

Summary: We have shown that Poisson reduction of the bi-Hamiltonian hierarchy of 'free motion' on $\mathfrak{M}=T^{*} \mathrm{U}(n)$ results in a bi-Hamiltonian hierarchy describing the time development of the gauge invariant observables forming $C^{\infty}\left(\mathbb{T}_{\text {reg }}^{n} \times \mathfrak{i u}(n)\right)^{\mathcal{N}(n)}$. The reduced hierarchy is called 'trigonometric spin Ruijsenaars-Sutherland hierarchy'.

Interpretation as a spin Sutherland model (well-known): Introduce new variables by the diffeomorphism:

$$
\begin{gathered}
\mathbb{T}_{\mathrm{reg}}^{n} \times \mathfrak{i u}(n) \ni(Q, L) \Longleftrightarrow(Q, p, \phi) \in \mathbb{T}_{\mathrm{reg}}^{n} \times \mathfrak{i u}(n)_{\mathrm{diag}} \times \mathfrak{i u}(n)_{\perp} \\
\text { using } \quad L(Q, p, \phi):=p-\left(\mathcal{R}(Q)+\frac{1}{2} \mathrm{id}\right)(\phi)
\end{gathered}
$$

The entries p_{j} of p and q_{j} in $Q_{j}=e^{\mathrm{i} q_{j}}$ form canonically conjugate pairs, and are combined with the Poisson algebra of the quotient
$\mathfrak{u}(n)^{*} / / o \mathbb{T}^{n}=\left(\mathfrak{i u}(n)_{\perp}\right) / \mathbb{T}^{n}$. The space of physical observables becomes

$$
C^{\infty}\left(\mathbb{T}_{\text {reg }}^{n} \times \mathfrak{i u}(n)_{\mathrm{diag}} \times \mathfrak{i u}(n)_{\perp}\right)^{\mathcal{N}(n)}
$$

and the reduced first Poisson bracket takes the form

$$
\{\mathcal{F}, \mathcal{H}\}_{1}^{\text {red }}(Q, p, \phi)=\left\langle D_{Q} \mathcal{F}, d_{p} \mathcal{H}\right\rangle-\left\langle D_{Q} \mathcal{H}, d_{p} \mathcal{F}\right\rangle+\left\langle\phi,\left[d_{\phi} \mathcal{F}, d_{\phi} \mathcal{H}\right]\right\rangle
$$

In these variables, we get the standard spin Sutherland Hamiltonian

$$
\mathcal{H}_{2}(Q, p, \phi):=\frac{1}{2}\left(L(Q, p, \phi)^{2}\right)=\frac{1}{2} \sum_{i} p_{i}^{2}+\frac{1}{8} \sum_{i \neq j} \frac{\left|\phi_{i j}\right|^{2}}{\sin ^{2} \frac{q_{i}-q_{j}}{2}} .
$$

The spin variable ϕ can be restricted by fixing the values of the Casimir functions $C_{i} \in C^{\infty}\left(\mathfrak{u}(n)^{*}\right)^{\cup(n)}$, and a special choice gives the spinless Sutherland model.

Interpretation as a spin Ruijsenaars model: Restrict attention to

$$
\mathbb{T}_{\text {reg }}^{n} \times \exp (\mathfrak{i u}(n)) \subset \mathbb{T}_{\text {reg }}^{n} \times \mathfrak{i u}(n)
$$

where L can be uniquely written in the form

$$
L=e^{p} b_{+}\left(b_{+}\right)^{\dagger} e^{p} \quad \text { with } \quad p \in \mathfrak{b}(n)_{0}, b_{+} \in \exp \left(\mathfrak{b}(n)_{+}\right)=: \mathrm{B}(n)_{+}
$$

Then consider the invertible change of variables

$$
(Q, L) \longleftrightarrow\left(Q, p, b_{+}\right) \longleftrightarrow\left(Q, p, \lambda\left(Q, b_{+}\right)\right) \text {with } \lambda\left(Q, b_{+}\right)=b_{+}^{-1} Q^{-1} b_{+} Q
$$

λ varies freely in the triangular nilpotent subgroup $\mathrm{B}(n)_{+}<\mathrm{B}(n)$. This gives the identification

$$
C^{\infty}\left(\mathbb{T}_{\text {reg }}^{n} \times \exp (\mathfrak{i u}(n))\right)^{\mathcal{N}(n)} \longleftrightarrow C^{\infty}\left(\mathbb{T}_{\text {reg }}^{n} \times \mathfrak{b}(n)_{0} \times \mathrm{B}(n)_{+}\right)^{\mathcal{N}(n)}
$$

For $\mathcal{F}, \mathcal{H} \in C^{\infty}\left(\mathbb{T}_{\text {reg }}^{n} \times \mathfrak{b}(n)_{0} \times \mathrm{B}(n)_{+}\right)^{\mathcal{N}(n)}$, the change of variables leads to the 'decoupled form' of the second Poisson bracket:

$$
2\{\mathcal{F}, \mathcal{H}\}_{2}^{\text {red }}(Q, p, \lambda)=\left\langle D_{Q} \mathcal{F}, d_{p} \mathcal{H}\right\rangle-\left\langle D_{Q} \mathcal{H}, d_{p} \mathcal{F}\right\rangle+\left\langle D_{\lambda}^{\prime} \mathcal{F}, \lambda^{-1}\left(D_{\lambda} \mathcal{H}\right) \lambda\right\rangle .
$$

The last term encodes the natural Poisson bracket on $\mathrm{B}(n) / / \mathbb{T}^{n}$, which is the Poisson-Lie analogue of $\mathfrak{u}(n)^{*} / / o \mathbb{T}^{n}$.

In terms of these variables, the main Hamitonian $\operatorname{tr}(L)$ has the form

$$
\operatorname{tr}(L)=\sum_{i=1}^{n} e^{2 p_{i}} V_{i}(Q, \lambda) \quad \text { with } \quad V_{i}(Q, \lambda)=\left(b_{+}(Q, \lambda) b_{+}(Q, \lambda)^{\dagger}\right)_{i i}
$$

and thus the reduced system can be interperted as a spin RS model. The corresponding open subset of the reduced phase space is

$$
\left(\mathbb{T}_{\mathrm{reg}}^{n} \times \mathfrak{b}(n)_{0} \times\left(\mathrm{B}(n)_{+} / \mathbb{T}^{n}\right)\right) / S_{n}
$$

We obtain Poisson subspaces by restricting $\mathrm{B}(n)_{+} / \mathbb{T}^{n}$ to \mathbb{T}^{n}-reduced dressing orbits of $\mathrm{U}(n)$. The dressing orbits $\widetilde{\mathcal{O}} \subset \mathrm{B}(n)$ are obtained by fixing the Casimirs, $\mathcal{C}_{i} \in C^{\infty}(\mathrm{B}(n))^{\mathrm{U}(n)}$. The smallest non-trivial dressing orbit gives the standard spinless, trigonometric (real) RS model.

- Does the bi-Hamiltonian story generalize in a reasonable manner if we replace $U(n)$ by an arbitrary compact simple Lie group?
- What about generalization to spin Sutherland and RS models of GibbonsHermsen and Krichever-Zabrodin type, and what about the elliptic case?
- Outstanding open question: How to obtain the standard spinless, hyperbolic (real, repulsive) RS model by Hamiltonian reduction?

A very incomplete list of references
D. Kazhdan, B. Kostant and S. Sternberg: Hamiltonian group actions and dynamical systems of Calogero type, Comm. Pure Appl. Math. XXXI (1978) 481-507
J. Gibbons and T. Hermsen: A generalisation of the Calogero-Moser system, Physica

D 11 (1984) 337-348
M.A. Semenov-Tian-Shansky, Dressing transformations and Poisson group actions, Publ. RIMS 21 (1985) 1237-1260
P.I. Etingof, I.B. Frenkel and A.A. Kirillov Jr.: Spherical functions on affine Lie groups, Duke Math. J. 80 (1995) 59-90
I. Krichever and A. Zabrodin: Spin generalization of the Ruijsenaars-Schneider model, non-abelian 2D Toda chain and representations of Sklyanin algebra, Russian Math. Surveys 50 (1995) 1101-1150
L.-C. Li and P. Xu: A class of integrable spin Calogero-Moser systems, Commun. Math. Phys. 231 (2002) 257-286
L. F. and B.G. Pusztai: Spin Calogero models obtained from dynamical r-matrices and geodesic motion, Nucl. Phys. B 734 (2006) 304-325
L.F. and C. Klimčík: Poisson-Lie generalization of the Kazhdan-Kostant-Sternberg reduction, Lett. Math. Phys. 87 (2009) 125-138
L.F.: Poisson-Lie analogues of spin Sutherland models, Nucl. Phys. B 949 (2019) 114807
L.F.: Bi-Hamiltonian structure of a dynamical system introduced by Braden and Hone, Nonlinearity 32 (2019) 4377-4394
L.F.: Reduction of a bi-Hamiltonian hierarchy on $T^{*} \mathrm{U}(n)$ to spin RuijsenaarsSutherland models, arXiv:1908.02467 [math-ph], to appear in Lett. Math. Phys.

