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Introduction

The discovery of the quantized nature of the electromagnetic radiation and atomic energies

followed by the foundation of Quantum Mechanics is one of the greatest achievements in

physics. Quantum theory is found to provide excellent description of fields and elementary

particles as well, and it became a standard tool for investigating “microscopic” physical

objects.

Dirac postulated the superposition principle to be a fundamental concept even before

the canonical Hilbert-space formulation of the theory has been established. Although the

predictive power of quantum mechanics is based on this principle, it is counter-intuitive

for a human mind that experiences a world of classical mechanics since the beginning of

consciousness. The most famous example showing the incompatibility of the superposition

principle with the usual way of thinking was given by Schrödinger [1, 2], where the fate

of a cat in a box is triggered by the decay of a radioactive atom. If the duration of this

gedanken experiment equals to the half-life of the atom, it is obvious that the survival

probability of the cat is 1
2
. More surprisingly, the result will be an entangled state, the

superposition of a dead cat with a decayed atom and a cat alive with an undecayed atom.

The two states that form the superposition – as a matter of life and death – are clearly

distinct. Such a superposition of two classically distinguishable states, which is usually

called a Schrödinger-cat state, is allowed in quantum systems, but never observed in

everyday life. In fact, the term “classically distinguishable states” means states that can

be interpreted in a classical world, where, due to the lack of the superposition principle,

their superposition is not present. (Note that here and throughout this thesis the attribute

“classical” stands for the opposite of “quantum”.)



INTRODUCTION

In fact, most of the quantum mechanical states have properties that are unusual from

the classical point of view, and therefore, in some sense, they are nonclassical. On the

other hand, Schrödinger-cat states are in such a strong contradiction with the classical

description of a physical system, that they can be called highly nonclassical quantum

states without exaggeration. The Wigner function of these states is negative over some

regions of its domain, which is the signature of (high) nonclassicality from our point of

view.

An apparent implication of the quantum effects that are paradoxical from the classical

point of view is that there exists a classical and a quantum realm in nature, with their

respective laws. The quantum realm is usually identified with microscopic particles, but

sometimes it is difficult to draw a non-flexible quantum-classical border. E.g., considering

a fullerene (C60) molecule, there are experimental situations, such as the scattering of

highly charged ions on C60, when a fully classical model provides agreement with the

measured results [3]. On the other hand, this cage of 60 carbon atoms surrounded by 360

electrons produces interference fringes on a screen placed behind a grating [4], that is, the

molecule as a whole exhibits genuinely quantum behavior.

Alternatively, we can assume that quantum mechanics is universal, and so is the

superposition principle. In this case, however, the emergence of classical properties has to

be explained in the framework of quantum theory. There is a name for this fundamental

problem: decoherence. In other words, decoherence is the disappearance of the quantum

superpositions that distinguishes a Schrödinger-cat state from the corresponding classical

mixture describing a system that is either in one of the classical states or in the other.

Models for decoherence usually describe it dynamically, that is, decoherence is considered

as a process that is extremely fast on everyday timescales.

Besides its fundamental importance, exploring the mechanisms of decoherence can

have practical applications as well. The recently born and rapidly developing field of

quantum information technology relies on the quantum nature of the physical objects that

store, carry and process information. This is the very origin of the classically unreachable

computational power of quantum algorithms. From this point of view, decoherence is

the most serious obstacle still hindering the practical use of quantum computation (QC)

2



INTRODUCTION

[5]. Knowing the way in which decoherence destroys quantum superpositions renders it

possible to find promising decoherence-free states. These states are exceptionally robust,

they keep their quantum properties for a time hopefully long enough for implementing

quantum algorithms.

In this work we consider the decoherence model that is based on the interaction of

the investigated quantum system with its unavoidably present (quantum) environment.

In Chap. 1 we summarize the basic concepts of this model, which is called environment

induced decoherence. Chap. 2 is devoted to the description of the methods that are useful

in setting up and solving the relevant dynamical equations, which, besides realizing the

conceptually important link between quantum and classical mechanics, provide a realistic

description of open quantum systems.

In the second part of the thesis we use these methods in order to analyze nonclassicality

and investigate the effects of decoherence in concrete quantum systems. The presented

results are based on the publications [6, 7, 8, 9, 10, 11,12,13].

In Chap. 3 we investigate the time evolution of wave packets in the anharmonic Morse

potential, which can provide a realistic model for a vibrating diatomic molecule. This

chapter deals with the situation when no environmental effects are present. Using the

Wigner function of the system, we show that for vibrations with amplitudes exceeding

the limits of the harmonic approximation, spontaneous formation of Schrödinger-cat states

occur. These highly nonclassical states are superpositions of two distinct states that are

localized both in position and momentum.

As a result of the environmental influence, the Schrödinger-cat states are expected

to disappear rapidly, and it is known that when the potential is is approximated by a

harmonic one, the result of the decoherence will be the mixture of the constituent localized

states. Our analysis in Chap. 4 shows that this is not the case for the Morse oscillator. We

introduce a master equation for a general anharmonic system in interaction with a thermal

bath of harmonic oscillators. Using this equation we find that decoherence drives the

system into a density operator that can be interpreted as the mixture of localized states

equally distributed along the phase space orbit of the corresponding classical particle.

That is, the information related to the position along this orbit (“phase information”) is

3
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completely lost. On the contrary, after the process of decoherence, the energy distribution

of the system is still quite sharp, in fact the expectation value of the Hamiltonian is very

close to its initial value. Because of the separation of the time scales of decoherence and

dissipation, these processes can be clearly distinguished. We define the characteristic

time of the decoherence as the time instant when the transition between the decoherence

dominated and dissipation dominated time evolution takes place.

In Chap. 5 the same definition is proven to be valid for a system of two-level atoms

interacting with the free radiational field. This model offers the possibility of investi-

gating the approach to the macroscopic limit by increasing the number of atoms. We

found that the larger is this number, the more naturally ans sharply the time evolution

splits into two regimes. In this physical system the atomic coherent states [14] can be

given a clear classical interpretation, they correspond to certain directions of the Bloch

vector [15]. Therefore superpositions of different atomic coherent states are rightly called

atomic Schrödinger-cat states. We show by analytical short time calculations that the

coherent constituents of these highly nonclassical states are robust against the effects of

decoherence. Consequently, the decoherence of the atomic Schrödinger-cat states is ex-

pected to lead to the classical mixture of the constituent atomic coherent states. We obtain

that this conjecture is true, unless decoherence is exceptionally slow. In Chap. 5 we give a

scheme of decoherence that remains valid also for the so-called symmetric Schrödinger-cat

states, which exhibit exceptionally slow decoherence.

The basic object which is manipulated in QC algorithms is a qubit, which is an abstract

two-level quantum system. A system of two-level atoms can provide a physical realization

of a sequence of qubits. The usefulness of this realization depends on the extent to

which the difficulties related to the decoherence can be eliminated. In this context the

the possible preparation of decoherence-free states is important, this issue is discussed in

Chap. 6. We consider the atoms to be in a cavity, and propose a method that can prepare

decoherence-free states. Besides the free time evolution in the cavity, our scheme requires

the possibility of changing the state of one of the atoms on demand. The analysis of these

requirement shows that our scheme can be implemented with present day cavity QED

setups.

4



Chapter 1

Environment induced decoherence

The apparent lack of a superposition of macroscopically distinct quantum states (Schrödin-

ger cats) has been an interesting and vivid problem since Schrödinger’s famous pa-

pers [1, 2]. A successful approach, initiated by Zeh [16] and developed by Zurek [17],

obtains the loss of quantum coherence as the consequence of the inevitable interaction

with the environment. Theoretical studies in this framework have investigated a variety of

model systems usually coupled to a collection of harmonic oscillators as an environment.

Fundamental work has been done on this subject in Refs. [18, 19, 20,21,22, 23, 24, 25], for

reviews see [26, 27]. Important experiments have also been carried out during the last

years [28,29,30].

We note that whatever successful is the approach of the environment induced de-

coherence, it is not the only possible mechanism that can explain the phenomenon of

decoherence. Spontaneous collapse models are conceptually different, they are based on

an appropriately modified Schrödinger equation, which automatically leads to classical

behavior for large systems. We shall not consider these models here, a review can be

found in Chap. 8 of Ref. [27]. The role of gravity is also often discussed in both of the

two main approaches, see [31,32,24,33].



ENVIRONMENT INDUCED DECOHERENCE

1.1 Formation of system-environment entanglement

Apart from cosmology, we usually focus our interest on a specific part of the universe.

This distinguished subsystem (our “system”, S) is, however, unavoidably coupled to the

“rest of the world”, called environment (E) in this context. Although the way in which

we single out our system can appear accidental or even artificial, it is clearly necessary

to obtain a useful, solvable model. Additionally, measurements performed on S are in

most of the cases “local”, i.e., concern the degrees of freedom of the system only. (In

fact, the definition of the “system” in a theoretical model is closely related to the possible

measurements the outcomes of which are to be predicted.) Neglecting the S-E interaction

leads to results that are good approximations only for very well isolated systems and for

short times. For a more realistic description of the necessarily open quantum system S,

the effects of the environment have to be taken into account. The system-environment in-

teraction builds up entanglement (Verschränkung) between the the two quantum systems

S and E. In order to obtain results for the system only, we have to average over the unob-

servable environmental degrees of freedom. This process of “tracing out the environment”

(see the next chapter) provides a density operator of S that usually describes a mixed

state and contains all the information that can be extracted by local measurements.

In order to illustrate this concept, we consider a simple but expressive example [27,

pp. 41-42] with the interaction term

Vint =
∑

n

|n〉SS〈n| ⊗BE(n) =
∑

n

|n〉SS〈n|BE(n) (1.1)

connecting S and E. The states {|n〉S} are assumed to form an orthogonal basis in the

Hilbert space of the system, while BE(n) denote (Hermitian) environmental operators.

The operators |n〉SS〈n| act in the Hilbert space of the system, and similarly BE(n) stands

for the tensorial product of the identity idS with the environmental operator BE(n). In

what follows, when it is not necessary, the tensorial product sign will be omitted in the

notation.

Note that Vint is special in the sense that it does not contain cross terms like |n〉SS〈m|,

n 6= m, but it demonstrates the main effects well. Later on we shall consider more general

6
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interactions as well. As a further approximation, we neglect the self-Hamiltonians of S

and E for the moment. Assuming an initially uncorrelated state

|Ψ(t = 0)〉SE = |φ(0)〉S|Φ(0)〉E =
∑

n

cn|n〉S |Φ(0)〉E, (1.2)

the time evolution builds up S-E correlations and leads to an entangled state:

|Ψ(t)〉SE =
∑

n

cn|n〉S e
−iBE(n)t

h̄ |Φ(0)〉E =
∑

n

cn|n〉S |Φ〉nE, (1.3)

where |Φ〉nE = exp(−iBE(n)t/h̄)|Φ(0)〉E. This result can be verified by Taylor expanding

the time evolution operator exp(−iVintt/h̄). The local or reduced density operator of the

system is

ρS = TrE(ρSE) = TrE [|Ψ〉SE SE〈Ψ|] , (1.4)

where the operation TrE means trace over environmental degrees of freedom. Initially

ρS(0) =
∑
nm

c∗mcn|n〉SS〈m|, (1.5)

and as Eq. (1.3) shows, it evolves according to

ρS(t) =
∑
nm

c∗mcn |n〉SS〈m| m
E 〈Φ|Φ〉nE. (1.6)

That is, in the basis defined by the interaction (1.1), the off-diagonal elements of ρS are

multiplied by the overlap of the corresponding (time dependent) environmental states,

while the diagonal elements remain unchanged. Depending on the form of the opera-

tors BE(n), after a certain time the states |Φ〉nE can become orthogonal and hence the

interaction diagonalizes the reduced density operator of the system

ρS(0) →
∑

n

|cn|2 |n〉SS〈n|. (1.7)

This phenomenon, the decoherence, can be expressed as the apparent collapse of the

state of the system: ρSE at this time instant still represents a pure state, but the phase

7
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relations of the states {|n〉S} are inaccessible for a local observer. The RHS of Eq. (1.7) is

formally identical with the density operator that would be the result of a von Neumann-

type measurement [34] corresponding to the operator
∑

n |n〉SS〈n|. The notion that the

environment continuously measures, or monitors the system, is understood in this loose

sense, without assuming the collapse of |Ψ(t)〉SE.

The essential reason for the disappearance of the interference terms of ρS(t) in the

above example was the entanglement of the two systems S and E. Similarly to the

case of an EPR pair [35, 36], where it is impossible to assign a pure state to one of the

constituents of the pair, ρS, which initially described a pure state, turns into a mixture.

This feature of the system-environment interaction is present also in more sophisticated

models where there is an interplay between the interaction and internal dynamics of S

and E governed by the self-Hamiltonians, see the second part of this work. Also in these

more general situations the (by assumption pure) system + environment state |Ψ〉SE can

be written in the Schmidt representation [37,38,39,27] at any time as

|Ψ(t)〉SE =
∑

k

√
pk(t) |ϕk(t)〉S |Φk(t)〉E , (1.8)

where the positive numbers pk add up to unity and |ϕk〉S and |Φk〉E are elements of certain

orthonormal bases (Schmidt bases) of the system and the environment, respectively. A

comparison shows that Eq. (1.3) is a special case of this generally valid representation,

with |ϕk〉S = |k〉S and |Φk(t)〉E = |Φ〉kE, apart from a possible phase factor. Note that

if the dimensionality of any of the involved Hilbert spaces is finite then the number of

nonzero terms in the sum (1.8) is necessarily also finite. This holds even in the case when

E represents a continuum [37,40].

The participation ratio

K =
1∑
k p

2
k

, (1.9)

which is a real number “counting” the nonzero terms in Eq. (1.8), can serve as a measure

of entanglement [40]. For a summary of other approaches in quantifying entanglement,

see Ref. [41]. The participation ratio is related to the so-called Schmidt number [42],

which is the integer number of the nonzero coefficients pk in Eq. (1.8). However, K

8
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is somewhat more practical, especially in numerical calculations when exact zeros are

difficult to identify. A product state like the one given by Eq. (1.2), has a single term

in its Schmidt sum, i.e., p0(0) = 1 and pk(0) = 0 for k 6= 0, and K = 1 in this case.

Any interaction is clearly nonlocal (as it couples S and E) and thus has the capacity of

creating entanglement and consequently increase the participation ratio.

Having a product state |ϕ0〉|Φ0〉 at t = 0, the short-time dynamics of entanglement

formation can be characterized by the decrease of the coefficient p0 in the Schmidt de-

composition (1.8). According to [38], in leading order in time we can write

p0(t) = 1− At2, (1.10)

with the rate of entanglement

A =
∑

k 6=0,l 6=0

|S 〈ϕk(0)| E 〈Φl(0)|V |ϕ0〉S |Φ0〉E|
2 . (1.11)

This quantity can be used to test the stability of a quantum state in the presence of a

given interaction Hamiltonian V : small value of A means that the initial system state

|ϕ0〉 becomes entangled slowly with the environment.

We note that entanglement – although it is peculiar from the classical point of view

– is rather common in quantum systems. The mere statistics of 2, 3, . . . partite random

states shows that the relative number of non-entangled states is rapidly disappearing

by increasing the number of the parties. More precisely, using an appropriate measure,

numerical evidence shows that the volume of the separable states decreases exponentially

as a function of the dimension of the composite system [43,44].

9
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1.2 Dynamical stability of quantum states and

the direction of the decoherence

According to the previous section, the interaction of the investigated quantum system S

and the environment E builds up S-E entanglement. If the reduced density operator of

the system initially represented a pure state, it turns into a mixture as a consequence

of the interaction. The direction of the decoherence is related to the question how it is

possible to determine this mixture for a given initial system state.

Let start with a practical method that will be used in Chap. 5, where the dynamical

equations are solved numerically. We consider a single two-level atom, which is clearly a

microscopic quantum system. A general interaction with the environment has a twofold

effect: It changes the energy of the atom, and transforms an initially pure atomic state

into a mixture. A representative example can be the interaction of the atom with the

electromagnetic vacuum. In this case the time scale of these processes, namely energy

dissipation and decoherence, is roughly the same, see Chap. 5. However, if we add more

two-level atoms and consider their ensemble as the investigated system, usually it is

possible to distinguish decoherence and dissipation dynamically, because the characteristic

time of the second process is much longer than that of the first. Then, soon after the

fast decoherence, the reduced density operator of the system is the density operator into

which the decoherence has driven the atomic system.

It generally holds, that in “macroscopic” quantum systems the ratio of the character-

istic times related to dissipation and decoherence is much larger than in “microscopic”

cases. (We note that depending on the initial state, this ratio R can be larger than unity

even for microscopic objects: For superpositions of microwave coherent states R can be

controlled between 1 and 10, see Ref. [28]. According to Ref. [29], in the case of a single

9Be+ ion in a Paul trap, the value of R can be as much as 25.)

However, the characteristic time of the decoherence in a given model (that is, S, E,

and the interaction are specified) depends on the initial state. The stable or robust states,

for which this time is exceptionally long, are of special interest. These states are usually

called pointer states, as they were introduced in the context of a measurement process,

10
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where they correspond to the possible “classical” states of a measurement apparatus [17].

Since the formulation of this concept, pointer states have gained more general meaning,

as the most stable states of a quantum system, which does not need to be a measurement

apparatus. In this work the term “pointer states” is used in this extended sense.

Recalling Eq. (1.7), it can be seen that in the example of the previous section deco-

herence does not change the states {|k〉S}, therefore they are stable indeed. The reason

for this fact is that every |k〉S is an eigenstate of the operator
∑

n |n〉SS〈n| that ap-

pears in the interaction Hamiltonian given by Eq. (1.1). More generally, when HS, the

self-Hamiltonian of the investigated system can not be neglected, but it has common

eigenstates with the interaction term, like aa† in the phase relaxation of the harmonic

oscillator [45], the pointer states will be these common eigenstates (that is, energy eigen-

states).

In more difficult situations, because of the interplay between the self-Hamiltonian and

the interaction, it is not a trivial task to identify the stable pure states. One can even

construct artificial models, where it is impossible to find pointer states. However, e.g. the

so-called predictability sieve [46], which is method based on the relatively low entropy

production of the pointer states, works well for most of the physically relevant models.

This approach shows that the coherent states |α〉 of a harmonic oscillator are pointer

states in different models [45,46, and see also [47]]. In Chap. 5 we shall use Eq. (1.11) to

find states for which the entanglement with the environment builds up slowly.

Having determined the pointer states, an additional interesting question is the time

evolution of their superpositions. We consider pointer states that can be labeled by a dis-

crete index, but the possible answers are qualitatively the same in more general situations

as well. Recalling again the example of the previous section, we can see that it is possible

that the pointer states form an orthonormal basis, the elements of which are distinguished

by the environment. (Formally, this means that we have different environmental operators

BE(n) for each n in the interaction term Vint =
∑

n |n〉SS〈n|BE(n).) That is, if {|n〉S}

denotes the pointer basis, then, according to the previous section, we can calculate the

11
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result of the decoherence for any initial system state |ψ〉 in a particularly simple way:

|ψ(t = 0)〉 =
∑

k

ck|k〉S → ρ =
∑

k

|ck|2|k〉SS〈k|. (1.12)

Note that |ψ〉 could have been expanded in terms of any basis, but in this case the

pointer states have the unique property of satisfying the scheme (1.12). Thus, if the

environment distinguishes the pointer states, then their superposition rapidly transforms

into a mixture.

The robustness of the pointer states implies that they can survive long enough to

be observed. In fact, the known results show, that these states have a clear classical

interpretation [45, 46]. Therefore the result (1.12) is in accordance with the observation

that there are no superpositions of classical states in our macroscopic world.

However, it is also possible that the interaction with the environment does not draw a

distinction between some robust system states {|n〉S}N
n=1, N > 1. (This can be achieved by

setting BE(1) = BE(2) = . . . = BE(N) in the interaction term given by Eq. (1.1).) Now

any superposition of these states are as stable as the pointer states themselves. In other

words, the states {|n〉S}N
n=1 span a decoherence-free subspace (DFS). This possibility is of

high importance when decoherence should be avoided, such as in a physical realization of

quantum computational methods. Clearly, there are physical systems, where we do not

need to find the pointer states in order to characterize a DFS, simply because we have

additional information that leads directly to the wanted DFS, see Chap. 6.

The concept of the pointer states and methods that allow us to determine them, can

provide explanations of emergence of classical properties in an open quantum system.

We note that superselection rules – stating that certain quantum superpositions, such as

superpositions of different electric charge states, are not present in nature even in the

microscopic level – can also be investigated in the framework of environment induced

decoherence [18]. In fact, the aim of the program of decoherence [16, 18] is to explain all

superselection rules under the assumption of a universally valid quantum theory.

12



Chapter 2

Description of a quantum system

interacting with its environment

In this chapter we give a brief overview of the usual mathematical tools capable to calculate

the dynamics of open quantum systems. In these methods the basic object – the time

evolution of which we are interested in – can be the reduced density operator, or the state

vector of the system, but it is also possible that a quasiprobability distribution (QPD) [45]

of the system is to be calculated directly.

In the first case the reduced density operator of the system obeys non-unitary dynamics

that can turn an initially pure state into a mixture. Considering the system and its

environment as a single, closed quantum system, the equation that governs the non-

unitary time evolution can be derived. One obtains in this way an integro-differential

equation, called pre-master equation that is nonlocal in time. In some cases it is possible to

introduce approximations which remove this nonlocality and lead to a differential equation

termed as master equation. In section 2.1 we illustrate this process and analyze the role

of the Born and Markov approximations in a rather general example.

It is also possible to transfer a given master equation into stochastic processes that

involve the state vector of the system. Spontaneous collapse decoherence models (for

a review see [27, Chap. 8]) are often make use of the stochastic differential equations

(SDE) [48] obtained in this way. If the reduced density operator of the system can be
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represented by a quasiprobability distribution (QPD), it can be possible to transform a

given master equation into a partial differential equation involving the respective QPD.

These methods will be discussed briefly in Sec. 2.2.

Note that sometimes not all the information contained by the state of the system

is needed to answer a specific question, and it is possible to apply a technique that

directly leads to the required answer. E.g., in the case of spontaneous emission [49,50,51]

from a two-level atom, the quantity of interest is the population of the upper (or lower)

atomic level and the off-diagonal elements of the 2 × 2 reduced density matrix are in

principle irrelevant (although in some models they can be necessary in order to compute

the populations). However, in the context of decoherence, especially when our aim is to

determine the pointer states (Sec. 1.2), the complete state of the system itself is to be

calculated. Therefore we shall not consider methods that can be used to obtain the time

evolution of a specific physical quantity and focus on more general approaches. Heisenberg

picture methods, such as quantum Langevin equations [15], are not discussed here either.

2.1 Master equations

According to the general situation outlined in Chap. 1, we consider a quantum system

(S) interacting with its environment (E), which can be considered as a heat bath or

reservoir. This means that neither the energy, nor other macroscopic parameters of the

environment can change appreciably as a consequence of the system-environment coupling.

The environment as a reservoir is in most of the cases modeled by a large number of

harmonic oscillators, standing for e.g. the modes of the free electromagnetic field or phonon

modes in solids. A different, often used model describes the reservoir as a set of atomic

energy levels. We note that the logical steps followed in this section are not depending

on the chosen reservoir model.

Let the total (system plus environment) Hamiltonian be written in the form

HSE = HS +HE + εV̂ , (2.1)

14
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where the parameter ε in the interaction Hamiltonian V = εV̂ expresses the strength of

the S-E coupling. The starting point here is the von Neumann equation for the total

density operator:
d

dt
ρSE = − i

h̄
[HSE, ρSE] , (2.2)

and our aim is to clarify the role of the different approximations applied in deriving a

master equation for the reduced density operator of the system,

ρS = TrE ρSE. (2.3)

The rigorous way to proceed involves the projection techniques of Nakajima [52] and

Zwanzig [53,54], where one splits the information contained in ρSE into a “relevant” and

“irrelevant” part. In our case, if the system and the environment are initially uncorrelated,

i.e., ρSE(t = 0) = ρS(0)ρE(0), the relevant part would be ρS(t)ρE(0). (Note that while

PρSE(t) = ρS(t)ρE(0) defines a proper projection, the map ρSE(t) → ρS(t) does not.

Besides ρS(t) a “reference state”, that is, an environmental density operator is needed as

a result of a projection. In the above mentioned initially uncorrelated case the reference

state acquires physical significance as a part of ρSE(t = 0).)

However, the physical meaning of the master equation approach is seen more clearly

by choosing a more transparent method. In the following we consider a rather general

example in a way similar to the derivation in Ref. [55], but having performed the Born

and Markov approximations the final equation will be the same as if it were calculated

using the projection method. In the current chapter we concentrate on the generality

of the discussion, we point out what the necessary approximations are when obtaining

a master equation. Later on, in Chap. 4 this method will be used to treat the specific

problem of decoherence of wave packets in the anharmonic Morse potential. It will be also

shown that if we assume that HS has equidistant spectrum (which is clearly not the case

in a general anharmonic system) a simpler master equation is obtained that can describe

a system of two-level atoms interacting with the environment of a thermal photon bath,

see Chap. 5.

15
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The von Neumann equation (2.2) in an interaction picture reads

d

dt
ρi

SE(t) = − i

h̄

[
V i(t), ρi

SE(t)
]
, (2.4)

where the interaction picture operators are defined in the following way

ρi
SE(t) = U †(t)ρSEU(t), V i(t) = U †(t)V U(t), (2.5)

using the unitary operator

U(t) = e−
i(HS+HE)t

h̄ . (2.6)

Integrating the equation of motion (2.4), we obtain

ρi
SE(t) = ρi

SE(0)− i

h̄

∫ t

0

dt1
[
V i(t1), ρ

i
SE(t1)

]
. (2.7)

Iterating this solution and performing the trace over reservoir variables we find

ρi
S(t) = ρi

S(0) +
∞∑

k=0

(
− i

h̄

)k ∫ t

0

dt1

∫ t1

0

dt2 · · ·

×
∫ tk−1

0

dtkTrE

[
V i(t1),

[
V i(t2), . . .

[
V i(tk), ρ

i
SE(0)

]]]
. (2.8)

Now the k-th term in the sum is proportional to εk, see Eq. (2.1). If we consider a weak

interaction, it is sufficient to take into account only the first two terms with k = 1 and

2. This is analogous to the usual approach of time dependent perturbation theory, and

also to the Born expansion of the scattering amplitude [56]. Therefore the restriction of

the interaction to at most second order is a kind of Born approximation. Sometimes a

different approximation, which will be described later, is also called Born approximation,

therefore the neglection of higher order terms in Eq. (2.8) can be termed as the first part

of the Born approximation, yielding

d

dt
ρi

S(t) = − i

h̄
TrE

[
V i(t), ρi

SE(0)
]
− 1

h̄2

∫ t

0

dt1TrE

[
V i(t),

[
V i(t1), ρ

i
SE(0)

]]
. (2.9)

Assuming that the system and the environment is initially uncorrelated ρSE(t = 0) =

16
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ρS(0)ρE(0), ρE(0) corresponds to thermal equilibrium and V has no diagonal matrix

elements in the eigenbasis of HE, the first term vanishes on the RHS of Eq. (2.9). With

these realistic assumptions we have

d

dt
ρi

S(t) = − 1

h̄2

∫ t

0

dt1TrE

[
V i(t),

[
V i(t1), ρ

i
SE(0)

]]
. (2.10)

The only approximation made so far was the step from Eq. (2.8) to Eq. (2.9), which

was justified by the weakness of the perturbation induced by the interaction Hamiltonian.

Clearly, this approximation (as a perturbative result) introduces a limit of the applicability

of Eq. (2.10), because for a time t too long, the neglected terms in Eq. (2.8) could change

the time evolution significantly. In principle this difficulty could be circumvented by

dividing the time interval [0, t] into N smaller subintervals with sufficiently short duration

of ∆t = t/N and applying Eq. (2.10) successively. Within one of these short time intervals

[(n− 1)∆t, n∆t], the replacement of ρi
SE((n− 1)∆t) with ρi

SE(n∆t) in the integrand does

not affect that property of the equation of motion that it is correct up to second order in

the interaction. In this way we introduced a natural coarse graining of the time evolution,

so that d
dt
ρi

S(n∆t) does not depend on the density operators ρi
SE that belong to earlier

times. That is, the equation

d

dt
ρi

S(n∆t) = − 1

h̄2

∫ n∆t

(n−1)∆t

dt1TrE

[
V i(n∆t),

[
V i(t1), ρ

i
SE(n∆t)

]]
. (2.11)

defines a Markovian sequence of density operators {ρi
S(n∆t)}N

n=0. This step is the Markov

approximation.

However, it is difficult to calculate the elements of this Markovian chain according

to Eq. (2.11), because in order to be able to perform the trace over the reservoir, we

have to know the total ρSE at the starting point of each short time interval. The final

approximation follows from the assumption that the state of the reservoir does not change

appreciably due to the interaction. More precisely, we assume ∆t to be long compared to

the relaxation time of the environment. Consequently, on the time scale defined by ∆t,

the system-environment correlation that builds up due to the interaction affects only the

system. Formally, this second part of the Born approximation is performed by replacing

17
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ρi
SE(n∆t) with ρi

S(n∆t)ρi
E(0) in Eq. (2.11).

By setting n∆t = 0 and (n + 1)∆t = τ the equation of motion in the Born-Markov

approximation reads:

d

dt
ρi

S(τ) = − 1

h̄2

∫ τ

0

dt1TrE

[
V i(τ),

[
V i(t1), ρ

i
S(τ)ρi

E(0)
]]
. (2.12)

In summary, the validity of the Born-Markov approximation is based on the possibility

of the separation of the environmental and system time scales: If there are time intervals

which are short enough to allow the cutoff of the interaction at the second order terms,

and, simultaneously, long enough for the relaxation in the environment to take place,

then the Born-Markov approximation can be used. We note that the considerations that

led from Eq. (2.7) to Eq. (2.12) are rather general, the only assumption concerning the

interaction Hamiltonian was that it has no diagonal matrix elements in the eigenbasis of

HE. In Chap. 4 the interaction Hamiltonian V as well as HS will be specified and the

integration in Eq. (2.12) will be performed to obtain a master equation that describes a

vibrating diatomic molecule in interaction with the environment of thermal photon modes.
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2.2 Other methods

As an alternative of the method summarized in the previous section, it is possible to

“unravel” [57] the master equation into stochastic processes that involve the state vector

of the system. Solving the stochastic differential equation (SDE) [48] several times, an

ensemble of pure states, i.e., rank 1 density operators is obtained. Properly renormalizing

and summing up these projectors we arrive at a density operator that describes the

ensemble. The notion unraveling means that in the limit of infinite number of ensemble

elements the corresponding density operator will be identical to the solution of the master

equation.

In this sense individual outcomes of the stochastic process have no physical interpreta-

tion, but this not the only possible point of view. Indeed, in spontaneous collapse models

(for a short review see Ref. [27, Chap. 8]), the stochastic equation replaces the usual

Schrödinger equation, i.e., the former one is postulated to be the fundamental equation

describing the time evolution. This interpretation leads to spontaneous collapse of the

wave function of the system of interest without referring to any disturbance due to the

environment. The parameters in these models are chosen such as to permit the same dy-

namics to be valid for both microscopic and macroscopic systems but leading to different

observable behavior in the two cases. However, the approach of this thesis is based on the

universality of the Schrödinger equation and describes the appearance of classical proper-

ties in quantum systems as a consequence of inevitable interaction with the environment.

Therefore we shall not adopt the idea that physical interpretation can be associated to

individual outcomes of stochastic processes being the unraveling of a master equation.

However, these stochastic equations undoubtedly must be considered as very useful tools

to obtain approximate solutions of the underlying master equation.

Additionally, if the reduced density operator of the system can be represented by a

quasiprobability distribution (QPD), it can be possible to transform a given master equa-

tion into a partial differential equation involving the respective QPD. The resulting partial

differential equation is often turns out to have the form of a Fokker-Planck equation. Af-
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ter a brief overview of the quasiprobability distributions (Sec. 2.2.1), a typical example

will be shown in Sec. 2.2.2.

2.2.1 Wigner functions

Quasiprobability distributions (QPDs) are used extensively in quantum physics for various

problems, and are specially instructive in visualizing the process of decoherence. These

distributions map the state of a quantum system on a continuous parameter space that

can be identified with the phase space of the system. From a more mathematical point

of view, this continuous parameter space can be considered as a coadjoint orbit of the

underlying Lie group [58].

In the case of an oscillator, the phase space is a plane that is traditionally parametrized

by two real numbers, x and p. A system of N two-level atoms (see Chap. 5), if they are

invariant with respect to permutations, is identical to the subspace characterized by the

j = N/2 eigenvalue of the usual angular momentum operator J2. In this system the

relevant symmetry group is SU(2), and the phase space is the surface of a 2-sphere. The

usual coordinates on this Bloch-sphere are the azimuthal and polar angles, θ and φ.

In the following the construction of the Wigner functions W (x, p) and W (θ, φ) will

be given in a way that points out the similarities. Note that Wigner functions are not

the only possible QPDs in either systems, but as more general quasidistributions will

not appear later in this work, it sufficient to concentrate on W (x, p) and W (θ, φ). The

construction of additional QPDs in the above systems can be found in Refs. [59] and [60],

and the relation of these methods is discussed in Ref. [6].

Given a density operator of the system, ρ, the corresponding Wigner functions are

defined as the expectation value of the respective kernel operators

W (x, p) = Tr [ρ∆(x, p)] , (2.13)

W (θ, φ) = Tr [ρ∆(θ, φ)] , (2.14)
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where, according to [61,60]

∆(x, p) =
1

π2

∫ ∞

−∞

∫ ∞

−∞
du dv ei(vX−uP )ei(up−vx) (2.15)

and

∆(θ, φ) =
N∑

K=0

K∑
Q=−K

T †KQYKQ(θ, φ). (2.16)

The operatorsX and P are the dimensionless position and momentum operators ([X,P ] =

i), while YKQ denote the spherical harmonics [62] and TKQ stand for the spherical multi-

pole operators [60]. Since the kernels given by Eqs. (2.15) and (2.16) are Hermitian, both

the spherical (2.14) and the “planar” (2.13) Wigner functions are real. These functions

are normalized with respect to the appropriate (invariant) measures

∫ ∞

−∞

∫ ∞

−∞
dx dp W (x, p) = 1,

∫ π

0

∫ 2π

0

sin θdθ dφ W (θ, φ) = 1. (2.17)

However, the value of these Wigner functions can be negative in certain domains of the

phase space, that is why they are called quasidistributions. This is a manifestation of the

fact that quantum mechanics is not equivalent to a classical statistical theory. Conversely,

a state with non-negative Wigner function is rightly considered as classical. Thus, for a

given density operator ρ, the degree of nonclassicality can be characterized by the aid of

the corresponding Wigner function. The quantity [63]

Mnc(ρ) = 1− I+(ρ)− I−(ρ)

I+(ρ) + I−(ρ)
, (2.18)

is found to be an appropriate measure of nonclassicality [63, 10]. Here I+(ρ) and I−(ρ)

are the moduli of the integrals of the Wigner function over those domains of the phase

space where it is positive and negative, respectively. On using Eqs. (2.17), we obtain that

0 ≤ Mnc < 1. The disappearance of nonclassicality is of course closely related to the

decoherence: as we shall see later in several examples, decoherence drives the system into

a state with positive Wigner function, implying Mnc = 0.

21



INTERACTION WITH THE ENVIRONMENT

2.2.2 Partial differential equations

In the case of a time dependent density operator ρ(t), Eqs. (2.14) and (2.13) assign a

Wigner function to ρ(t) at any time instant. However, sometimes it is favorable (and

more instructive) to calculate the time dependent Wigner function directly. In this sec-

tion we consider the example of the amplitude damped harmonic oscillator (HO) which

is the special case of the model described in Sec. 2.1, with HS representing a distin-

guished oscillator with angular frequency ωS (our “system”) that is coupled to a set of

environmental oscillators via its destruction operator, a. The environment is assumed

to be in thermal equilibrium at a given temperature T . The calculations that will be

performed later in Sec. 4.1 can be adapted to this case, yielding the interaction picture

master equation

∂ρ

∂t
=
γ

2
(n+ 1)

(
2aρa† − a†aρ− ρa†a

)
+
γ

2
n
(
2a†ρa− aa†ρ− ρaa†

)
, (2.19)

where n = 1/(exp( h̄ωS

kT
)− 1), ρ is the interaction picture reduced density operator of the

system and γ denotes the damping rate [45].

Combining Eqs. (2.13) and (2.19) we can express ∂W (x, p, t)/∂t in terms of the op-

erators a, a†, ∆(x, p) and ρ. At this point it worth introducing the complex variable

α = (x+ ip)/2. Then the identities

a† exp(αa† − α∗a) =

(
∂

∂α
+
α∗

2

)
exp(αa† − α∗a),

a exp(αa† − α∗a) =

(
α

2
− ∂

∂α∗

)
exp(αa† − α∗a) (2.20)

and their adjoints inserted into the definition (2.13) lead to

∂W (α, t)

∂t
=
γ

2

(
∂

∂α
α+

∂

∂α∗
α∗
)
W (α, t) + γ

(
n+

1

2

)
∂2

∂α∂α∗
W (α, t). (2.21)

This partial differential equation has the form of a Fokker-Plank equation [48]. (Note that

this is not a general consequence of the procedure outlined above, there are situations when

the resulting equation is not so well-behaved as Eq. 2.21.) Considering a Wigner function
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with a single peak, the qualitative behavior of W (α, t) can be seen even intuitively. There

are regions on the complex plane α, where the first term in Eq. (2.21), which contains only

first derivatives, has opposite sign. This causes W (α, t) to increase (decrease) where the

sign is positive (negative), resulting in the overall motion of the peak. Therefore this first

term is called the drift term. On the other hand, the second (diffusion) term broadens

the distribution and – due to the normalization – decreases the peak value.

As an important application from the viewpoint of decoherence, we consider the initial

Wigner function that corresponds to the superposition of two oscillator coherent states

[64,65] |Φ〉 = 1/
√

2(|α = 2〉+ |α = −2〉), see Fig. 2.1 a). The positive hills represents the

p x

W(x,p)

xp

0

0

a)

W(x,p)

b)

−1

1 2

−2

0.5

0

0
−1
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−2
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b)a)

Im α Re α Im α
Re α

W W

0.40.5

Figure 2.1: Schematic time evolution of a Wigner function according to Eq. (2.21).
The most important consequence of the amplitude damping is the disappearance of the
quantum interference between the positive hills that correspond to the initial oscillator
coherent states |α = 2〉 and |α = −2〉.

two coherent states, while the strong oscillations between the hills are signatures of the

quantum coherence of |α = 2〉 and |α = −2〉. These coherent states have clear classical

interpretation, and therefore their superposition can be called a Schrödinger-cat state,

see Ref. [66,67, and references therein]. Fig. 2.1 a) is a typical Wigner function for these

nonclassical states. The effect of the amplitude damping is shown in Fig. 2.1 b), it leads

to the disappearance of the quantum interference represented by the oscillations. This is

what we expect according to the Fokker-Planck equation (2.21), because W (α, t) changes

rapidly in the regions where it oscillates, implying very fast diffusion that smears out the

oscillations. On the level of the master equation (2.19), this result is the manifestation
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of the fact that coherent states of the HO are pointer states (see Sec. 1.2) to a very good

approximation [45] in the case of the amplitude damping interaction.

A qualitatively different decoherence mechanism related to the HO is the so-called

phase relaxation [45]. Since our results in the anharmonic Morse system has similarities

with this process, it is worth summarizing here the phase relaxation as well. Now the

relevant master equation is

∂ρ

∂t
=
γ

2

(
2a†aρa†a− a†aa†aρ− ρa†aa†a

)
, (2.22)

and, as it has been already mentioned (Sec. 1.2), the eigenstates of the HO Hamiltonian

are pointer states in this case. This means that according to the general scheme given

by Eq. (1.12), the result of the decoherence will be the a mixture of energy eigenstates

with the weights defined by the initial state. That is, the energy of the system remains

unchanged during the process of decoherence, but the phase information is completely

destroyed: The distance between the origin and the highest values of the Wigner function

shown in Fig. 2.2 b) is the same as it was initially (Fig. 2.2 a)), but W (α) is cylindrically

symmetric now.

p
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x

W(x,p)

p x

a) b)

00
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0 0
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Re α
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Figure 2.2: Wigner functions visualizing phase relaxation. The initial state shown in a)
is a coherent state |α = −2〉. Part b) of the figure corresponds to the result of the phase
relaxation.
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Chapter 3

Molecular wave packets in the Morse

potential

Peculiar quantum effects of wave packet motion in anharmonic potentials have been pre-

dicted in several model systems [68, 69, 70]. We are going to investigate the role of an-

harmonicity in the case of the Morse potential. This model potential is often used to

describe a vibrating diatomic molecule having a finite number of bound eigenstates to-

gether with a dissociation continuum. Our initial wave packets will be Morse coherent

states [71], and in the current chapter we consider the case when the environment does

not influence the dynamics of the system [10]. We show that the Wigner functions of

the system exhibit spontaneous formation of Schrödinger-cat states at certain stages of

the time evolution. These highly nonclassical states are coherent superpositions of two

localized states corresponding to two different positions of the center of mass. The degree

of nonclassicality is also analyzed as the function of time for different initial states. Our

numerical calculations are based on a novel, essentially algebraic treatment of the Morse

potential [72].

The same system in the case when the environmental effects are present will be ana-

lyzed in Chap. 4.
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3.1 The Morse oscillator as a model of a vibrating

diatomic molecule

Our description of molecular vibrations is based on the Morse Hamiltonian [73], that can

be written in the following dimensionless form

H = P 2 + (s+ 1/2)2[exp(−2X)− 2 exp(−X)], (3.1)

where the shape parameter, s, is related to the dissociation energy D, the reduced mass

of the molecule m, and the range parameter of the potential α via s =
√

2mD
h̄α

− 1/2. The

dimensionless operator X in Eq. (3.1) corresponds to the displacement of the center of

mass of the diatomic system from the equilibrium position, and the canonical commutation

relation [X,P ] = i also holds.

The Hamiltonian (3.1) has [s] + 1 normalizable eigenstates (bound states), plus the

continuous energy spectrum with positive energies. The wave functions of the bound

eigenstates of H are ψn(y) =
√

[n!(2s− 2n)]/[(2s− n)!] ys−ne−y/2L2s−2n
n (y), where y =

(2s+ 1)e−x is the rescaled position variable, and L2s−1
n (y) is a generalized Laguerre poly-

nomial. The corresponding eigenvalues are Em(s) = −(s −m)2, m = 0, 1, . . . [s], where

[s] denotes the largest integer that is smaller than s.

In the following we solve the Schrödinger equation

d

dt
|φ〉 = −i 2π

2s+ 1
H|φ〉, (3.2)

where time is measured in units of t0 = 2π/ω0, with ω0 = α
√

2D
m

being the circular

frequency of the small oscillations in the potential.

The initial states of our analysis will be Morse coherent states [71,74] associated with

the wave functions

〈y|β〉 =
(1− |β|2)s√

Γ(2s)(1− β)2s
ys exp

(
−y

2

1 + β

1− β

)
. (3.3)
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We expand these states in terms of a suitable finite basis:

|β〉 =
N∑

n=0

cn|ψn〉 =

[s]∑
n=0

[√(2s− 2n)Γ(2s− n+ 1)

n!Γ(2s)

Γ(2s− n)

Γ(2s− 2n+ 1)

(1− |β|2)s

(1− β)n

× 2F1(−n, 2s− n; 2s− 2n+ 1; 1− β) |ψn〉
]

+
N∑

n=[s]+1

cn|ψn〉, (3.4)

where 2F1 is the hypergeometric function of the variable 1− β. The first [s] + 1 elements

of the basis {|ψn〉}N
n=0 are the bound states, and the continuous part of the spectrum

is represented by a set of orthonormal states which give zero overlap with the bound

states. The energies of the states |ψn〉, n > [s] follow densely each other, approximating

satisfactorily the continuous energy spectrum [72].

We note that the states in Eq. (3.4) are “single mode” coherent states in contrast

to those of [75], where the dynamics of two-mode coherent states were investigated for

various symmetry groups, including SU(1, 1), which is in a close relation to the relevant

symmetry group of the Morse potential [76].

The label β in Eq. (3.4) is in one to one correspondence with the expectation values

〈X〉β = ln

(
Re

1 + β

1− β

)
, 〈P 〉β = s

Im[(1 + β)/(1− β)]

Re[(1 + β)/(1− β)]
, (3.5)

therefore we can use the notation |x0, p0〉 for the state |β〉 that gives 〈X〉 = x0 and

〈P 〉 = p0. The localized wave packet corresponding to |x0, p0〉 is centered at x0 (p0) in

the coordinate (momentum) representation.

In our calculation we have chosen the NO molecule as our model, where m = 7.46 a.u.,

D = 6.497 eV and α = 27.68 nm−1 [73], yielding s = 54.54. That is, this molecule has

55 bound states, and we found that a basis of dimension N + 1 = 150 is sufficiently

large to handle the problem. The absolute square of the wave functions |〈x|0, 0〉|2 and

|〈x|0.5, 0〉|2 is depicted in Fig. 3.1, where V (x) is also shown. Fig. 3.1 indicates that

initial displacements, x0, having the order of magnitude of unity will not lead to “small

oscillations”.

The Morse coherent states [71,74] can be prepared by an appropriate electromagnetic
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Figure 3.1: The absolute square of the wave functions corresponding to the Morse
coherent states |x0, p0 = 0〉, with x0 = 0.0 (ground state) and x0 = 0.5. These plots
correspond to the case of the NO molecule, where s = 54.54. (We have generated a movie
file showing the time evolution of the wave function plotted with dotted line, it can be
found in Ref. [10].)

pulse that drives the vibrational state of the molecule starting from the ground state into

an approximate coherent state. An example can be found in [77], where the effect of an

external sinusoidal field is considered.

3.2 Behavior of expectation values as a function of

time

Starting from |φ(t = 0)〉 = |x0, p0 = 0〉 as initial states, first we consider the dependence

of the 〈X〉(t) curve on x0. It is not surprising that for small values of x0 (≤ 0.06) these

curves show similar oscillatory behavior as in the case of the harmonic oscillator, see

Fig. 3.2. However, when anharmonic effects become important, a different phenomenon

can be observed: the amplitude of the oscillations decreases almost to zero, then faster

oscillations with small amplitude appear but later we re-obtain almost exactly 〈X〉(0), and

the whole process starts again. Fig. 3.2 is similar to the collapse and revival in the Jaynes-

Cumings (JC) model [78, 79], but in our case the non-equidistant spectrum of the Morse
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Figure 3.2: The expectation value of the dimensionless position operator as a function
of time. The initial states were |φ(t = 0)〉 = |x0, p0 = 0〉, with x0 = 1.0, x0 = 0.5 and
x0 = 0.06.

Hamiltonian is responsible for the effect. There are important situations when revivals

and fractional revivals [68,80,81,82] of the wave packet can be described analytically [69],

but in a realistic model for a diatomic molecule the difficulties introduced by the presence

of the continuous spectrum implies choosing an appropriate numerical solution.

The expansion of the initial state in our finite basis |x0, 0〉 =
∑

n cn(x0)|ψn〉 shows

that for values of x0 shown in Fig. 3.2 the maximal |cn(x0)| belongs to n < [s]. That is,

the expectation value

〈X〉(t) =
N∑

n,k=0

cn(x)c∗k(x)〈ψk|X|ψn〉 exp

[
it

2π

2s+ 1
(Ek(s)− En(s))

]
(3.6)

is dominated by the bound part of the spectrum. Damping of the amplitude of the

oscillations is due to the destructive interference between the various Bohr frequencies

and we observe revival when the exponential terms rephase again.

Quantitatively, we have determined the dominant frequencies in Eq. (3.6) for x0 = 0.5

and found that they fall into two families, see Fig. 3.3. The first family is related to

the matrix elements 〈ψn|X|ψn+1〉 and a has a sharp distribution around ω1 = 0.9ω0. The

contribution of the second family to the sum in Eq. (3.2) is much weaker, these frequencies
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Figure 3.3: The weight of the dominant frequencies responsible for the collapse-revival
phenomenon in the expectation value of the position operator. The first peak is related to
the matrix elements 〈ψn|X|ψn+1〉, while the second family of nonzero weights corresponds
to the matrix elements 〈ψn|X|ψn+2〉.

around ω1 = 1.81ω0 correspond to the matrix elements 〈ψn|X|ψn+2〉. The width the first

distribution ∆ω1 = 0.1ω0 allows us to estimate the revival time as 2π/∆ω1 = 62.8t0, while

∆ω2 = 0.17ω0 is responsible for the partial revival at t/t0 ≈ 30, see Fig 3.2. Following

Refs. [68, 80], we denote by trev the time when the anharmonic terms in the spectrum

induce no phase shifts, that is, the initial wave packet is reconstructed. At trev/2 ≈ 60t0

all these phase factors are −1, while t/t0 = 30 corresponds to a quarter-revival, i.e., to

time trev/4.

3.3 Time evolution of the Wigner function of the sys-

tem

In order to gain more insight concerning the physical process leading to the collapse-

revival phenomenon seen in Fig. 3.2, one can look at the coordinate representation of

the wave function φ(x, t) = 〈x|φ(t)〉. In the representative case of |φ(t = 0)〉 = |x0, 0〉,

the wave function is an initially well localized wave packet that gradually falls apart into
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several packets and then conglomerates again, see Ref. [10].

Starting from the same initial state it is more instructive to visualize the time evolution

by the aid of the Wigner function W (x, p, t) that reflects the state of the system in the

phase space, see Sec. 2.2.1. The definition given by Eq. (2.13) can be reformulated for a

pure state that is represented by its wave function φ(x, t), yielding

W (x, p, t) =
1

2π

∫ ∞

−∞
φ∗(x+ u/2, t)φ(x− u/2, t)eiupdu. (3.7)

Fig. 3.4 a) shows the initial stage of the time evolution, while Fig. 3.4 b) corresponds

to t/t0 = 30. This second Wigner function is typical for Schrödinger-cat states, compare

with Fig. 2.1. W (x, p) in Fig. 3.4 b) corresponds to a superposition of two states that

are well-localized in both momentum and coordinate, and represented by the two positive

hills centered at x1 = −0.1, p1 = −18.0 and x2 = 0.3, p2 = 12.0. The strong oscillations

between them shows the quantum interference of these states.
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Figure 3.4: Wigner functions of the Morse system at the initial stage of the time evolution
and the formation of a Schrödinger-cat state. The plots a) and b) correspond to t/t0 = 0
and t/t0 = 30, respectively. The initial state was |φ(t = 0)〉 = |x0, p0 = 0〉, with x0 = 0.5.
(The movie file showing the time evolution of W can be found in Ref. [10].)

According to the our calculations, there are a few periods around t/t0 = 30, while the

state of the system can be considered to be a phase space Schrödinger-cat state. During

this time the Wigner function is similar to the one shown in Fig. 3.4 b), and it rotates

around the equilibrium position. Similar behavior of the Wigner function was found in [83]
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for the JC model. This effect is responsible for the partial revival around t/t0 = 30 shown

in Fig. 3.2, where the frequency of the oscillations is twice that of the oscillations around

t = 0: in the neighborhood of t/t0 = 30 there are two wave packets moving approximately

the same way as the coherent state soon after t = 0.

3.4 Measuring nonclassicality

According to Sec. 2.2.1, the Wigner function of a state |φ〉 can be used to determine

the nonclassicality of |φ〉. Having calculated W (x, p), it is straightforward to obtain the

quantity 0 ≤ Mnc < 1 (defined by Eq. (2.18)), which is an appropriate measure of the

nonclassicality [63]. Fig. 3.5 shows Mnc as a function of time for the same initial states
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Figure 3.5: Nonclassicality as a function of time. The initial state was |φ(t = 0)〉 =
|x0, p0 = 0〉, with x0 = 1.0, x0 = 0.5 and x0 = 0.06.

as in Fig. 3.2. For the small initial displacement of x0 = 0.06, we see that the Wigner

function is positive almost everywhere, the state can be considered as a classical one

during the whole time evolution.

For larger initial displacements we can easily identify two time scales. The shorter

one is the period of the wave packet in the potential, while the second time scale can be

identified with the revival time. Looking at the initial part of the curve Mnc(t), we observe
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that the state of the system is the most classical at those turning points where 〈X〉 > 0,

see Fig. 3.1. On the other time scale, the collapse of the oscillations in 〈X〉 presents itself

as the increase of Mnc, and the revival turns the state into a more classical one. When

the state of the system can be considered as a Schrödinger-cat state, Mnc(t) has a small

local minimum, but it still has significant values indicating strong nonclassicality.

3.5 Conclusions

We have found that in the potential of the NO molecule, when anharmonic effects are

important, the time evolution naturally leads to the formation of Schrödinger-cat states

at certain stages of the time evolution. These highly nonclassical states correspond to the

superposition of two molecular states which are well localized in the phase space.
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Chapter 4

Decoherence of molecular wave

packets

The correspondence between classical and quantum dynamics of anharmonic systems has

gained significant attention in the past few years [68, 80, 70, 69]. A short laser pulse

impinging on an atom or a molecule excites a superposition of several stationary states,

and the resulting wave packet follows the orbit of the corresponding classical particle in

the initial stage of the time evolution. However, the nonequidistant nature of the involved

energy spectra causes peculiar quantum effects, broadening of the initially well localized

wave packets, revivals and partial revivals [80,68,70,69,81,82]. As we saw in the previous

chapter, partial revivals are in close connection with the formation of Schrödinger-cat

states, which, in this context, are coherent superpositions of two spatially separated, well

localized wave packets [84]. Phase space description of vibrational Schrödinger-cat state

formation using animated Wigner functions can be found in [10]. According to Chap. 1,

these highly nonclassical states are expected to be particularly sensitive to decoherence.

The aim of this chapter is to analyze the process of decoherence for the spontaneously

formed Schrödinger-cat states in the anharmonic Morse potential.

In the following we introduce a master equation that takes into account the fact that

in a general anharmonic system the relaxation rate of each energy eigenstate is different.

This master equation is applied to the case of wave packet motion in the Morse potential

that is often used to describe a vibrating diatomic molecule. Considering the phase space
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description of decoherence, we show how the phase portrait of the system reflects the

damping of revivals in the expectation values of the position and momentum operators

due to the effect of the environment. We also calculate and plot the time evolution of the

Wigner function corresponding to the reduced density operator of the Morse system. The

Wigner function picture visualizes the fact that although our master equation reduces to

the amplitude damping equation (2.19) in the harmonic limit, the anharmonic effects lead

to a decoherence scheme which is similar to the phase relaxation (see Sec. 2.2.2 and also

Ref. [45]) of the harmonic oscillator (HO). It is found that the time scale of decoherence

is much shorter than that of dissipation, and gives rise to density operators which are

mixtures of localized states along the phase space orbit of the corresponding classical

particle. We illustrate the generality of this decoherence scheme by presenting the time

evolution of an energy eigenstate as well. We also calculate the decoherence time for

various initial wave packets. We show that decoherence is faster for wave packets that

correspond to a classical particle with a phase space orbit of larger diameter.

4.1 A master equation describing decoherence in the

Morse system

We consider a vibrating diatomic molecule and recall the Morse Hamiltonian

HS = P 2 + (s+ 1/2)2[exp(−2X)− 2 exp(−X)], (4.1)

which is often used to describe this system, see Sec. 3.1. The initial wave packets of

our analysis – similarly to the previous chapter – will be Morse coherent states [71],

|x0, p0〉, which are localized on the phase space around the point (x0, p0), see Fig. 3.4.

Although the construction given in [72] would allow us to use arbitrary initial states,

for our current purpose it suffices to consider states |x0, p0〉 with negligible dissociation

probability, i.e., coherent states that practically can be expanded in terms of the bound

states |φn〉, n = 0, 1, . . . [s]. This means that the relevant part of the spectrum of HS is

nondegenerate and discrete.
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The environment is assumed to consist of the modes of the free electromagnetic field

HE =
∑

k

h̄ωk(a
†
kak + 1/2). (4.2)

We assume the following interaction Hamiltonian

V = h̄X †
∑

k

gkak + h̄X
∑

k

gka
†
k, (4.3)

where, for the sake of simplicity, the coupling constants gk were taken to be real. Wish-

ing to keep the derivation as general as it is possible, the only necessary restriction on

the operator X is that it must have a strictly upper triangular matrix in the eigenbasis

{|φn〉}, i.e., X transforms each eigenstate of HS into a superposition of different eigen-

states corresponding to lower energy values. X † is the Hermitian conjugate of X . This is

the application of the rotating wave approximation (RWA) to an anharmonic, multilevel

system. Well-known examples imply that from the viewpoint of decoherence RWA is a

permissible approximation. According to Ref. [51], in the case of spontaneous emission,

RWA on the initial Hamiltonian modifies the level shifts induced by the environment.

This could be expected, because the total Hamiltonian with and without RWA has usu-

ally different spectra. However, the damping term that provides the time scale of the

spontaneous emission is practically unaffected by keeping the counter rotating terms in

the interaction Hamiltonian. A similar result was found for the case of a spin-1
2

system

in external magnetic field [85] and also for a single two-level atom in electric field [86].

Note that in the particular case of a vibrating diatomic molecule, the operators X and

X † gain a clear interpretation: in the eigenbasis of Morse Hamiltonian HS, they are the

upper and lower triangular parts of the molecular dipole moment operator, µ̂. We will

assume that µ̂ is linear [87], that is, proportional to the displacement X of the center

of mass of the diatomic system from the equilibrium position. Although in this chapter

the resulting master equation will be applied to describe the decoherence of a vibrating

diatomic molecule, we do not perform the X → X substitution during the derivation in

order to indicate the generality of our approach.
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Using the specific operators above, we can return to Eq. (2.12)

d

dt
ρi

S(τ) = − 1

h̄2

∫ τ

0

dt1TrE

[
V i(τ),

[
V i(t1), ρ

i
S(τ)ρi

E(0)
]]
, (4.4)

and perform the integration in order to obtain a differential equation that describes the

time evolution of the reduced density matrix of our system, ρS. The interaction picture

operator V i is defined by Eq. (2.5), and its expansion in the eigenbasis {|φn〉} of the

system Hamiltonian has the form

V i(t) =
∑
m>n

e
i(Em−En)t

h̄ X †
mn|φm〉〈φn|

∑
k

e−iωktgkak + h.c., (4.5)

where we invoked that X †
mn = 0 if m ≤ n. E0 denotes the ground state energy, and

the eigenvalues of HS follow each other in increasing order: Em > En, whenever m > n.

Therefore the integrand in Eq. (4.4) contains 16 terms. However, by assuming that

the environment is in thermal equilibrium at a given temperature T , we can deduce

that the terms containing
∑

k,l gkgl a
†
ka

†
l and its adjoint give no contribution, because

TrE[a†ka
†
lρE] = 0. (We note that for some specially prepared reservoirs, such as squeezed

reservoirs, this quantity need not be zero, see [55].) Moreover, since

TrE

(
a†kal ρE

)
= δkl〈a†kak〉ρE

and TrE

(
aka

†
l ρE

)
= δkl〈aka

†
k〉ρE

, (4.6)

we have

TrE

∑
k,l

gkgl a
†
kal ρE =

∑
k

(gk)
2nk, and TrE

∑
k,l

gkgl aka
†
l ρE =

∑
k

(gk)
2 (nk + 1) ,

(4.7)

where nm = 〈a†mam〉ρE
= 1/(exp( h̄ωm

kT
) − 1) is the average number of quanta in the m-th

mode of the environment. According to the assumption that the environment consists of

a large number of harmonic oscillators, we can convert the sum over modes to frequency-

space integral
∫∞

0
dωD(ω) . . ., where D(ω) denotes the density of states which is propor-

tional to ω2 in our case. The continuous version of Eq. (4.7) combined with Eq. (4.4)
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yields to

d

dt
ρS(τ) = −

∫ τ

0

dt1

∫ ∞

0

dωD(ω)g2(ω)

×
[
X (τ)X †(t1)ρS(τ)n(ω)e−i(t1−τ)ω + X †(τ)X (t1)ρS(τ) (n(ω) + 1) ei(t1−τ)ω

− X †(τ)ρS(τ)X (t1) (n(ω) + 1) ei(t1−τ)ω −X (τ)ρS(τ)X †(t1)n(ω)e−i(t1−τ)ω + h.c.
]
,

(4.8)

where the superscript i referring to the interaction picture was omitted. Choosing the

first term as a representative example, the application of Eq. (4.5) leads to

I1 =

∫ τ

0

dt1

∫ ∞

0

dωD(ω)g2(ω)X (τ)X †(t1)ρS(τ)n(ω)e−i(t1−τ)ω

=
∑

l,m<l,n<l

XmlX †
lne

i(Em−En)τ
h̄ |φm〉〈φn| ρS(τ)

∫ τ

0

dt1

∫ ∞

0

dωD(ω)g2(ω)n(ω)e−i(t1−τ)(ω−ωl+ωn),

(4.9)

where ωm = Em/h̄ and ωl = El/h̄. Interchanging the order of the time and frequency

integral and introducing the variables t2 = τ − t1, ωln = ωl − ωn > 0 we obtain

I1 =
∑

l,m<l,n<l

XmlX †
lne

i(Em−En)τ
h̄ |φm〉〈φn| ρ(τ)

∫ ∞

0

dω

∫ τ

0

dt2D(ω)g2(ω)n(ω)eit2(ω−ωln).

(4.10)

At this point it is worth recalling that τ is the duration of a time interval which is short

from the system’s point of view, i.e., the interaction picture reduced density operator

changes a little during τ . However, since the interaction is assumed to be weak, the

relation τ � 1/ωln also holds. This allows us to extend the upper limit of the time

integration to infinity in Eq. (4.10). Then the identity

∫ ∞

0

du e±iwu = πδ(w)± iPv

(
1

w

)
, (4.11)

where the Dirac-δ and Cauchy principal value distributions appear on the RHS, allows

us to evaluate the integral in I1. Eq. (4.11) shows that the effect of the environment is
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twofold: first it slightly modifies the energy spectrum of the system. This effect is related

to the imaginary term in Eq. (4.11). If our aim is not the calculation of the level shifts

themselves, then they can be neglected, provided the interaction is not too strong [51].

The second effect of the environment (related to the first term in Eq. (4.11)) is to induce

transitions between the (shifted) system energy levels, and this kind of environmental

influence is responsible for the decoherence. Therefore we can use the approximation

I1 ≈
∑

l,m<l,n<l

XmlX †
lne

i(Em−En)τ
h̄ |φm〉〈φn| ρ(τ)

∫ ∞

0

D(ω)g2(ω)n(ω)πδ(ω − ωln)

= U †(τ)XX †
aρSU(τ), (4.12)

where we returned to the explicit notation of the interaction picture, and the matrix

elements of the operator X †
a are defined by

〈φm|X †
a |φn〉 = 〈φm|X †|φn〉 πD(ωnm)g2(ωnm)n(ωnm). (4.13)

The master equation in the Schrödinger picture, neglecting the terms inducing level

shifts, reads:

d

dt
ρS(τ) = − i

h̄
[HS, ρS(τ)]−X †XeρS(τ)−XX †

aρS(τ)− ρS(τ)X †
eX − ρS(τ)XaX †

+ X †
aρS(τ)X + XeρS(τ)X † + X †ρS(τ)Xa + XρS(τ)X †

e , (4.14)

where each term following the unitary one (the commutator with HS) is calculated simi-

larly to I1, and

〈φm|Xe|φn〉 = 〈φm|X |φn〉 πD(ωnm)g2(ωnm) (n(ωnm) + 1) . (4.15)

The subscript e here and and a in Eq. (4.13) refers to emission and absorption, respectively.

As we can see, the matrix elements (4.13) and (4.15) of the operators that induce the

transitions depend on the Bohr frequency of the involved transition, which is a genuine

anharmonic feature. In the special case of the HO, when HS has equidistant spectrum,

and X is identified with the usual annihilation operator a, both Xa and Xe are proportional
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to X ≡ a, and Eq. (4.14) reduces to the amplitude damping master equation (2.19) at a

finite temperature.

In certain cases one can further simplify Eq. (4.14). When the environment induced

relaxation rates are much lower than the relevant Bohr frequencies, the system Hamil-

tonian induces oscillations that are very fast even on the time scale of decoherence and

vanish on the average. Ignoring these fast oscillations we arrive at the interaction picture

master equation

d

dt
〈φi|ρS|φj〉 = δi,j

∑
k 6=i

γik〈φk|ρS|φk〉 − Γc
ji〈φi|ρS|φj〉, (4.16)

that has already been obtained in Refs. [88,89] in order to treat the spontaneous emission

of a multilevel atom. In Eq. (4.16), γik denotes a relaxation rate, that is the probability

of the |φk〉 → |φi〉 transition per unit time, while Γc
ji = 1/2

∑
k(γik + γjk), where

γik =


2 〈φi|Xe|φk〉〈φi|X |φk〉 if i < k,

0 if i = k,

2 〈φi|Xa|φk〉〈φi|X |φk〉 if i > k.

(4.17)

However, due to the elimination of the fast oscillations related to HS, Eq. (4.16) is

not suitable for investigating the wave packet motion and decoherence simultaneously,

therefore we propose to use Eq. (4.14). On the other hand we note that Eq. (4.16)

radically reduces the computational costs of calculating the time evolution for long times,

which might be necessary when the system-environment coupling is very weak.

Supposing that our knowledge is limited to the populations Pn = 〈φn|ρs|φn〉, both

Eq. (4.14) and Eq. (4.16) leads to the Pauli type equation

d

dt
Pn =

∑
k

(γnkPk − γknPn) . (4.18)

Requiring the condition of detailed balance [90] in Eq. (4.18) leads to the steady-state

thermal distribution at the temperature of the environment.
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In the case of a diatomic molecule in the free electromagnetic field, g2(ω)D(ω) ∝ ω3,

and we assume that X = X, thus the nonzero matrix elements in Eqs. (4.13) and (4.15)

are

〈φm|Xa|φn〉 = λ 〈φm|X|φn〉 ωnm
3 n(ωnm), n < m

〈φm|Xe|φn〉 = λ 〈φm|X|φn〉 ωnm
3 (n(ωnm) + 1) , n > m

(4.19)

where the matrix elements of X can be calculated using the algebraic method summarized

in [71], and λ = πg2(ω)D(ω)/ω3 is an overall, frequency independent coupling constant.

For the sake of definiteness we have chosen the NO molecule as our model.

In order to get insight into the interplay between wave packet motion and decoherence,

it is worth considering a stronger molecule-environment interaction than the electromag-

netic field modes can provide. Keeping the structure of Eqs. (4.19), this can be done

by increasing the value of λ. Here we present calculations with two different coupling

constants, λ1 and λ2 which are chosen so that at zero temperature ω01/γ01 ≈ 105 and

4×103 for λ = λ1 and λ2, respectively. This model allows for the numerical integration of

the master equation (4.14) (that provides more details of the dynamics than Eq. (4.16))

in a time interval that is long enough to identify the effects of decoherence. These effects

can be summarized in a decoherence scheme (see Sec. 4.4) that has a clear physical in-

terpretation, and which is valid also in the weak molecule-environment interaction, when

(4.16) is more efficient to calculate the time evolution.

4.2 Time evolution of the expectation values

Starting from |x0, p0 = 0〉 as initial states, we saw in Chap. 3 that the qualitative behavior

of the expectation value 〈X〉(t) = 〈ψ(t)|X|ψ(t)〉 draws the limit of small oscillations. In

the absence of environmental coupling (i.e., λ = 0), for x0 ≤ 0.06, 〈X〉(t) (as well as

〈P 〉(t)) exhibits sinusoidal oscillations. For larger initial displacements from the equi-

librium position, the anharmonic effects become apparent. The collapse and revival in

〈X〉(t) and 〈P 〉(t) can be explained by referring to the various Bohr frequencies that de-

termine their time dependence: dephasing of these frequencies leads to the collapse of the

expectation value, and we observe revival when they rephase again.
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Figure 4.1: Phase portrait corresponding to the time evolution of the initial state |ψ(t =
0)〉 = |x0, p0 = 0〉, with x0 = 0.5. The parameters are λ = λ1, T = 5 h̄ω01/k, and t0 is
the period of the small oscillations in the potential. The initial point 〈X〉 = 0.5, 〈P 〉 = 0
together with the starting direction is also indicated.

For the initial state of |x0, 0〉, with x0 = 0.5, the original phase of the eigenstates

is restored [68, 80] around the full revival time trev = 110 t0, where t0 is the period of

the small oscillations in the potential. At t/t0 = 55 and t/t0 = 27.5 half and quarter

revivals [68, 80] can be observed. Fig. 4.1 shows the damping of the revivals both in

〈X〉(t) and 〈P 〉(t) when interaction with the environment is turned on. Note that the

phase portrait of the corresponding classical particle would be a helix with monotonically

decreasing diameter, revivals are of quantum nature. However, Fig. 4.1 does not provide

a complete description of the time evolution in the phase space, this can be given by using

Wigner functions, see Sec. 4.4.

4.3 Decoherence times

Our master equation (4.14) describes decoherence as well as dissipation. However, the

time scale of these processes is generally very different, providing a useful tool to dis-

tinguish the stages of the time evolution that are dominated either by decoherence or

dissipation [8]. In Fig. 4.2 an example is depicted showing how the method of time scale
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Figure 4.2: The entropy and the purity of the reduced density matrix of the Morse
system as a function of time, calculated using Eq. (4.14). The coupling parameter (see
Sec. 4.1) is λ = λ1 and T = 10 h̄ω01/k. The initial state was |ψ(t = 0)〉 = |x0, 0〉, with
x0 = 2.0.

separation works. We have calculated the entropy

S = −Tr [ρS ln(ρS)] , (4.20)

as well as the quantity Tr[ρ2
S], which measures the purity of the reduced density operator.

Note that the Tr operation without subscript refers to the trace in the system’s Hilbert

space. Decoherence time td is defined as the time instant that divides the time axis into

two parts where the character of the physical process is clearly different. Initially both

S(t) and Tr[ρ2
S(t)] change rapidly but having passed td (emphasized by a vertical line in

Fig. 4.2), the moduli of their derivative significantly decrease. After td the entropy and the

purity change on the time scale which is characteristic of the dissipation of the system’s

energy during the whole process. The time dependence of the participation ratio K given

by Eq. (1.9) is found to be similar to that of the entropy and purity. We note that the

typical value of K at the decoherence time was around 5, that is, just a few modes of

the environment were active. The same surprising result was found in Ref. [40], in the

context of spontaneous emission from a two-level atom.
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In summary, decoherence dominated time evolution turns into dissipation dominated

dynamics around td. In the next section we shall determine the density operators into

which the process of decoherence drives the system. In connection with these results we

have verified that the states around the decoherence time do not change appreciably in a

time interval that covers the possible errors in determining td.

An interesting question is the dependence of the decoherence time on the initial state

of the time evolution. We calculated td as a function of the initial displacement for the

case of displaced ground states (that is, coherent states with zero momentum, |x0, 0〉) as

initial states. It was found that for all values of λ and T , the decoherence time is longer

for smaller initial displacements. Additionally, for fixed λ and T the function td(x0) can

be well approximated by an exponential curve td(x0) = td(0) exp(−κx0). E. g., for λ = λ1,

T = 10 h̄ω01/k and 0 < x0 ≤ 2 the parameters take the values td(0) = 93 t0 and κ = 0.97.

It is known (see Chap. 3 and Ref. [80]) that quarter revivals in an anharmonic potential

lead to the formation of Schrödinger-cat states, i.e., states that are superpositions of two

distinct states localized in space [80] as well as in momentum [10, 91]. On the other

hand, smaller initial displacements correspond to classical phase space orbits with smaller

diameter. Consequently the quantum interference related to nonclassical states that are

formed during the course of time cover a smaller area in the phase space in this case.

This means that our result is a manifestation of the general feature of decoherence that

increasing the “parameter of nonclassicality”, which is the diameter of the corresponding

classical orbit in our case, causes faster decoherence [27]. A similar result was found in [8]

for the case of decoherence in a system of two-level atoms [63,92].

4.4 Wigner function description of the decoherence

In order to visualize the time evolution of the reduced density matrix of the Morse system

we have chosen the Wigner function picture, which has been summarized in Sec. 2.2.1.

This description allows us to investigate the correspondence between classical and quan-

tum dynamics.

First we recall the ideal case without environment. Then, in the initial stage of the
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Figure 4.3: Time evolution of the Wigner function corresponding to the initial state
|ψ(t = 0)〉 = |x0, 0〉, with x0 = 0.5. The coupling parameter is (see Sec. 4.1) λ = λ2 and
T = 0.3 h̄ω01/k. The plots a) and b) correspond to time instants t/t0 = 0 and 27.5, while
both c) and the contour plot d) are snapshots taken at t/t0 = 137.5.

time evolution, the positive hill corresponding to the wave packet |x0, p0〉 follows the orbit

of the classical particle that has started from (x0, p0) at t = 0. However, due to the

uncertainty relation, the Wigner function as a quasiprobability distribution has a finite

width, and this fact combined with the form of the Morse potential implies the stretching

of the Wigner function along the classical orbit in the course of time. (See Ref. [91]

for similar results with the Husimi Q function.) After a certain time the increasingly

broadened wave packet becomes able to interfere with itself, and around the quarter

revival time one can observe two positive hills chasing each other at the opposite sides of

the classical orbit. The strong oscillations of W between the hills represent the quantum

correlation of the constituents of this molecular Schrödinger-cat state [84]. Later on the
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initial Wigner function is restored almost exactly and Schrödinger-cat state formation

starts again. Detailed Wigner function description of these processes that are related to

the free time evolution can be found in [10].

In the case when environmental effects are present, we found that decoherence fol-

lows a general scheme. A representative series of Wigner functions is shown in Fig. 4.3.

The snapshots correspond to the initial state and time instants when the first and third

Schrödinger-cat state formation would occur in the absence of the environment. Conse-

quently, the Wigner function in Fig. 4.3 b) corresponds almost to a Schrödinger-cat state,

but this state is already a mixture. However, there are still negative parts of the function

in between the positive hills centered at x1 = 0.51, p1 = 0 and x2 = −0.34, p2 = 0. The

“ridge” that connects these hills along the classical orbit is absent in a pure Schrödinger-

cat state, see Fig. 3.4 b). Later on this ridge becomes more and more pronounced and at

the decoherence time we arrive at the positive (that is, classical in the sense of Sec. 2.2.1)

Wigner function of Fig. 4.3 c) and d). According to the contour plot Fig. 4.3 d), the high-

est values of this function trace out the phase space orbit of the corresponding classical

particle. That is, ρdec
S , the reduced density matrix that arises as a result of decoherence,

can be interpreted as a mixture of localized states that are equally distributed along the

orbit of the corresponding classical phase space orbit.

It is worth comparing this result with the case of the HO, when the master equation

(4.14) reduces to the amplitude damping equation (2.19), see Sec. 2.2.2. It is known

that harmonic oscillator coherent states are robust against the decoherence described

by the amplitude damping master equation (as well as against the Caldeira-Leggett [19]

master equation [46]), the initial superposition of coherent states turns into the statistical

mixture of essentially the same states. This is a consequence of the facts that these states

are eigenstates of the destruction operator a, and the operators in the nonunitary terms of

Eq. (4.14) are proportional to a and a† in the harmonic case. None of these statements can

be transferred to the anharmonic system, where the Morse coherent states do not remain

localized during the course of time, even without environment. Therefore the scheme of

the decoherence is qualitatively different for the harmonic and anharmonic oscillators:

Our results in the anharmonic system are similar to the phase relaxation in the harmonic
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state as initial state. The coupling parameter (see Sec. 4.1) is λ = λ1 and T = 10 h̄ω01/k.
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case [45], where the energy of the system remains unchanged, but the phase information

is completely destroyed, see Sec. 2.2.2. We note that a similar result was obtained in

Ref. [93], where the rotational degrees of freedom were considered as a reservoir for the

harmonic vibration of hot alkaline dimers.

Our decoherence scheme is universal to a large extent. In the investigated domain

of the coupling constants λ1 ≤ λ ≤ λ2 and temperatures ranging from T = 0 to T =

15 h̄ω01/k, it is found to be valid for all initial states, not only for coherent states.

Fig. 4.4 shows an example when the initial state is not a wave packet, it is the fifth bound

state, corresponding to E5, which is very close to 〈0.5, 0|HS|0.5, 0〉, so direct comparison

with Fig. 4.3 is possible. As we can see, although the two Wigner functions are initially
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obviously very different, they follow different routes (that takes different times) to the

same state: Fig. 4.3 c) and Fig. 4.4 c) are practically identical. The final plot in Fig. 4.4

indicates how the Wigner function represents the long way to thermal equilibrium with

the environment: the distribution becomes wider and the hole in the middle disappears.

It is expected that the loss of phase information has observable consequences. Ac-

cording to the Franck-Condon principle, the absorption spectrum of a molecule around

the frequency corresponding to an electronic transition between two electronic surfaces

depends on the vibrational state. The time dependence of the spectrum should exhibit

the differences between the pure state of an oscillating wave packet and the state ρdec
S

and the thermal state. More sophisticated experimental methods based on the detection

of fluorescence [94] or fluorescence intensity fluctuations [95], surely have the capacity of

observing the dephasing phenomenon considered in this chapter.

4.5 Conclusions

We investigated the decoherence of wave packets in the Morse potential. The decoherence

time for various initial states was calculated and it was found that the larger is the

diameter of the phase space orbit described by a wave packet, the faster is the decoherence.

We obtained a general decoherence scheme, which has a clear physical interpretation:

The reduced density operator that is the result of the decoherence is a mixture of states

localized along the corresponding classical phase space orbit.
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Chapter 5

A system of two-level atoms in

interaction with the environment

Two-level atoms are essential objects in quantum optics, several important models rely on

this notion [78,79,51,49,50]. Clearly, most atoms have much more than two energy levels,

i.e., considering only two of them is a simplification. However, in usual (experimental)

situations the initial conditions and the frequency of the external electromagnetic field

or the long lifetime of the lower level supports the two-level view of the atomic system.

Additionally, a two-level atom provides a physical realization of a qubit, which is the basic

entity in quantum computation (QC) [5, 96,97].

In the present chapter we investigate a system which is a candidate for the experimental

study of decoherence and possibly also for practical applications. The model consists of

several identical two-level atoms (the system) interacting with a large number of photon

modes in a thermal state (the environment). It has the advantage that it is simple to make

the correct transition from a microscopic system to a macroscopic one by increasing the

number of atoms. We point out how the master equation (4.14) reduces to the equation

appropriate in this case [98, 51, 99], and use it to analyze the evolution of the reduced

density matrix of the atomic system.

By analytical short-time calculations we show that the atomic coherent states [14] of

our system are robust against decoherence caused by the realistic interaction we consider.

The possibility of classical interpretation and this behavior justifies that the superpositions
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of atomic coherent states are relevant with respect to the original problem of Schrödinger,

and such a highly nonclassical superposition is rightly called an atomic Schrödinger-cat

state [100, 63, 101]. We also note that there are several proposals for the experimental

preparation of these type of states [102,103,104].

We present the decoherence and dissipation properties of atomic Schrödinger-cat states

based on numerical computations of their time evolution. It will be seen that similarly

to the case of the Morse system (see Chap. 4), although the one and the same solution of

the master equation describes both decoherence and dissipation, the time scales of these

processes differ by orders of magnitude. Using this fact, we show how one can make a clear

distinction between these two processes despite of the interplay between them, and define

the decoherence time. This decoherence time strongly depends on the initial conditions,

notably, it is particularly large for a special set of initial cat states [63, 92]. This will be

termed as slow decoherence in contrast with the general case which will be referred to as

rapid decoherence.

The interplay between decoherence and energy dissipation is the most appreciable in

connection with the concept of pointer states that has been summarized in Sec. 1.2. It

will be shown that when the decoherence is rapid, then the constituent coherent states of

the initial state are pointer states to a very good approximation. However, when there is

enough time for dissipation, i.e., when decoherence is slow, then the initial atomic coherent

states themselves evolve into mixtures, and therefore a refined scheme of decoherence

holds.

In order to underline the contrast between rapid and slow decoherence we superpose

four atomic coherent states corresponding to the vertices of a suitably oriented tetrahe-

dron. The time evolution of this four component cat state will be studied by the aid of

the spherical Wigner function (Sec. 2.2.1). As it is expected, the interaction with the

environment selects that pair from the initial superposition which constitutes a long-lived

cat state.
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5.1 Description of the model

We consider a system of identical two-level atoms interacting with the environment of

macroscopic number of photon modes. With dipole interaction and in the rotating wave

approximation the total system is described by the following model Hamiltonian:

H = HS +HE + V = h̄ωaJz +
∑

k

h̄ωka
†
kak +

∑
k

h̄gk

(
a†kJ− + akJ+

)
, (5.1)

where ωa is the transition frequency between the two atomic energy levels, ωk denote the

frequencies of the modes of the environment and gk are coupling constants. The operators

J+, J− and Jz in the interaction term are dimensionless collective atomic operators obeying

the usual angular momentum commutation relations [105]. On replacing X † and X by J+

and J− respectively, the process we followed in Sec. 4.1 leads to the interaction picture

master equation [98,51]

dρ(t)

dt
= −γ

2
(n+ 1) (J+J−ρ(t) + ρ(t)J+J− − 2J−ρ(t)J+)

−γ
2
n (J−J+ρ(t) + ρ(t)J−J+ − 2J+ρ(t)J−) . (5.2)

Here n is the mean number of photons in the environment, γ = πD(ωa)g
2(ωa) denotes

the damping rate, and for the sake of simplicity the subscript S of the reduced density

operator of atomic system has been dropped. Note that the same master equation can be

obtained by considering a low-Q cavity containing Rydberg atoms [99].

If the state of the atomic system was initially invariant with respect to the permuta-

tions of the atoms, i.e., it was a superposition of the totally symmetric Dicke states [105],

the dipole interaction described by V =
∑

k h̄gk

(
a†kJ− + akJ+

)
in (5.1) would not destroy

this symmetry. Therefore we may restrict our investigation to the totally symmetric N+1

dimensional subspace of the whole Hilbert-space of the atomic system. This subspace cor-

responds to the first column in Fig. 6.1 and it is isomorphic to an angular momentum

eigensubspace labeled by j = N/2. This model has been proven to be valid in cavity QED

experiments with many atoms, as reviewed in [99].

The environment as a static reservoir (represented by the thermal photon modes)
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continuously interacts with the atomic system influencing its dynamics. As it is obvious,

the dissipation of the energy leads to thermal equilibrium in the system, corresponding to

the stationary solution of the master equation (5.2). However, as it will be shown here, the

same master equation describes also a much more interesting process. The continuous

”monitoring” [17] of the atomic system by the environment results in the total loss of

the coherence of the quantum superpositions in the system. This decoherence process is

generally extremely fast compared to the dissipation, except for special initial conditions

which will be discussed in section 5.3.

5.2 The initial stage of the time evolution

In this section we apply the general concepts introduced in Sec. 1 to our system in order

to find the initial states for the master equation (5.2) which are relevant to the original

problem of Schrödinger [1,2] concerning the unobservability of macroscopic superpositions.

First we consider the short-time behavior of the total system. At zero temperature

the photon field of the present model is in its pure vacuum state |0〉, therefore the initial

state factorizes as

|Ψ(0)〉 = |ϕ0(0)〉 |0〉 , (5.3)

i.e., there is a single term in the Schmidt decomposition (see Sec. 1) of the compound

state. Due to the interaction, this product state evolves into a more general Schmidt

sum like Eq. (1.8), or in other words it turns into an entangled state. According to the

summary in Sec. 1, the rate of entanglement can be obtained as

A =
∑

k 6=0,l 6=0

|〈ϕk(0)| 〈Φl(0)|V |ϕ0(0)〉 |0〉|2 . (5.4)

Using the explicit form of the interaction Hamiltonian V in Eq. (5.1), a straightforward

calculation leads to

A = C (J+, J−) := 〈J+J−〉 − 〈J+〉 〈J−〉 , (5.5)

i.e., in our system the rate of entanglement is the normally ordered correlation function
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of the operators J+ and J−.

Let us turn to the case of finite temperatures, when the total system has to be repre-

sented by a mixed state even at t = 0. The linear entropy, defined as

Slin = Tr(ρ− ρ2), (5.6)

can be regarded as a relevant measure of decoherence [27,26]. Restricting ourselves again

to the initial regime of the time evolution, we can make use of the master equation (5.2)

and calculate the time derivative of the linear entropy at t = 0

(
∂Slin

∂t

)
t=0

= γ (〈n〉 C (J−, J+) + (〈n〉+ 1) C (J+, J−)) . (5.7)

The normally (antinormally) ordered correlation function C (J+, J−) (C (J−, J+)), disap-

pears in the eigenstate |j,m = −j〉 (|j,m = j〉) of J− (J+). However, the collective atomic

operators J− and J+ have no simultaneous eigenstates which would annullate the right

hand side of Eq. (5.7). Nevertheless, we are going to show that if the number of atoms

N = j/2 is large enough, then the correlation functions in Eq. (5.7) are negligible in

a class of states called atomic coherent states [14]. These states are labeled by a com-

plex parameter τ = tan(β/2) exp(−iφ) (for the angles β and φ see Fig. 5.1) and can be

expanded in terms of the eigenstates of the operator Jz (Dicke states) as

|τ〉 =

j∑
m=−j

 2j

j +m

 1
2

τ j+m

(1 + |τ |2)j
|j,m〉. (5.8)

For large j, the atomic coherent states are approximate eigenstates of the operators

J− and J+ [14,92]. This statement is understood in the sense that the square of the cosine

of the angle α between |τ〉 and J− |τ〉

cos2 α =
|〈τ |J−| τ〉|2

〈τ | τ〉 〈τ |J+J−| τ〉
(5.9)

differs from unity by a factor which scales as (jτ 2)−1. Thus α becomes negligible in the

j → ∞ limit for finite τ [92]. The same statement holds for the operator J+, therefore
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both correlation functions in Eq. (5.7) are indeed negligible in the atomic coherent states

(5.8).

This suggests that the atomic coherent states are rather stable against the decoherence

induced by the photon modes, i.e., they can serve as a model of classical-like macroscopic

quantum states. This result is in analogy with the stability of the oscillator coherent

states obtained in [26].

Two such states, |τ1〉 and |τ2〉 can be considered as macroscopically distinct, whenever

the distance between the parameters τ1 and τ2 is sufficiently large on the complex plane.

This implies that the coherent superposition of these states yields an appropriate model

of the original paradox of Schrödinger.

Based on these results, the superpositions

|Ψ12〉 =
|τ1〉+ |τ2〉√

2(1 + Re 〈τ1|τ2〉)
(5.10)

will be called atomic Schrödinger cat states [100,63,7], see Fig. 5.1. Now we are going to

present our results on the decoherence and dissipation dynamics of these type of states.

x

y

z

β2

φ2 φ1

β1

τ 1τ 2

Figure 5.1: Scheme of an atomic Schrödinger cat state defined by Eq. (5.10). The points
labeled by τ1 and τ2 represent the corresponding atomic coherent states on the surface of
the Bloch-sphere. The angles defining the parameters τ1 and τ2 are also shown.
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5.3 Time scales

A typical result of the numerical integration of Eq. (5.2) is that the time evolution of the

states given by Eq. (5.10) can be characterized by two different time scales, as illustrated

by Fig. 5.2, where the linear entropy and the energy of the atomic system is plotted versus

time. As we can see, there exists a time instant td (marked with an arrow in Fig. 5.2)
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Figure 5.2: The two regimes of the time evolution. (Initially: τ1 = tan π/4, τ2 = 0.) The
number of atoms is N = 500 and the average number of photons is n = 1, td ≈ 6×10−5/γ
.

when the character of the physical process changes radically. (It is worth comparing this

figure with Fig. 4.2, which was obtained in the case of the Morse system.) Initially Slin(t)

increases rapidly while the dissipated energy of the atoms is just a small fraction of that

part of the energy which will eventually be transferred to the environment. On the other

hand, for longer times t� td both curves change on the same time scale. The energy of

the atomic system decays exponentially as a function of time allowing for identifying the

characteristic time of the dissipation, tdiss, with the inverse of the exponent. (We note

that in Fig. 5.2 the plotted time interval is much shorter than tdiss, thus the exponential

behavior is not seen.) More detailed calculations have shown that for high temperatures

the energy and the linear entropy exhibit similar exponential behavior in the second regime

of the time evolution. Their exponents coincide with 2-3% relative error. This implies
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that the initial stage of the time evolution is dominated by decoherence while after td

the dissipation determines the dynamics. Accordingly, we define the characteristic time

of the decoherence – by the same token as we did in Sec. 4.3 – as the instant when the

slope of the curve Slin(t) decreases appreciably. We note that td defined in this way is in

accordance with the decoherence time defined previously in [63] for a specific initial state.

It is remarkable that although a few hundred atoms do not really constitute a macro-

scopic system, the difference of the time scales is obviously seen in Fig. 5.2. It is generally

true that the larger N is, the more naturally and sharply the time evolution splits into

two regimes.

Now we turn to the investigation of the dependence of the decoherence time td on

the initial conditions. Fig. 5.3 shows the contour plot of the decoherence time versus the
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 0.003  --  0.004
 0.002  --  0.003
 0.001  --  0.002
 0.000  --  0.001

Figure 5.3: The dependence of the characteristic time of the decoherence on the param-
eters of the initial Schrödinger cat state: τ1 = tan β1/2, τ2 = tan β2/2. The number of
atoms is N = 50 and the average number of photons is n = 3.

parameters β1 and β2 (see Fig. 5.1) of the initial atomic Schrödinger cat state (5.10). We

have set φ1 = φ2 = 0 for simplicity. As we can see, the effect of decoherence is remarkably

slower when β1 ≈ β2 which was expected since in this case the overlap of the two initial

coherent states is not negligible, so these states can not be considered as “macroscopically

distinct”. Much more surprising is the fact that cat states which were initially symmetric

56



TWO-LEVEL ATOMS AND DECOHERENCE

with respect to the (x, y) plane (i. e. β1 ≈ π−β2 ) also decohere slower [63,7], but it is in

accordance with the analytical estimations of Braun et.al. [92]. In the following sections

we shall refer to these states as symmetric ones.

5.4 The direction of the decoherence

We saw in the previous section that the interplay between decoherence and dissipation is

reflected in the time evolution of the superpositions given by Eq. (5.10). In this section

we shall focus on the direction of the process resulting from the dynamics governed by

the master equation (5.2).

According to Sec. 1, the interaction with a large number of degrees of freedom selects

naturally the so-called pointer basis [17] in the Hilbert-space of the system subject to

decoherence. This process favors the constituent states of the pointer basis in the sense

that the system is driven towards a classical statistical mixture of these states. Thus,

from the present point of view ρ(td) is the relevant quantity to be examined.

Recalling the analytical results of sec. 5.2, it seems plausible to expect that the atomic

coherent states (5.8) will be pointer states.

By introducing the density matrix which corresponds to the classical statistical mixture

of the initial coherent states:

ρcl(τ1, τ2) =
1

2
(|τ1〉〈τ1|+ |τ2〉〈τ2|) , (5.11)

the expected scheme of the decoherence reads:

|Ψ12〉〈Ψ12| → ρcl(τ1, τ2). (5.12)

We shall refer to ρcl as the classical density matrix.

The distance between the actual density matrix ρ(t) and ρcl, defined with

D (ρ(t), ρcl) = Tr
[
(ρ(t)− ρcl)

2] , (5.13)
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Figure 5.4: The linear entropy Slin and the distance D between ρ and ρcl (defined by Eq.
(5.13)) in the case of a rapidly decohering Schrödinger cat state (τ1 = tanπ/4, τ2 = 0).
The number of atoms is N = 500 and the average number of photons is n = 1.

is always decreasing fast. Except for the case of slowly decohering cat states which will

be discussed below, D (ρ(t), ρcl) reaches its minimal value at the decoherence time, see

Fig. 5.4. This minimal value is very close to zero implying that the density matrix of the

system at this instant is nearly the same as the classical density matrix (5.11). This fact

justifies the definition of the characteristic time of the decoherence in section 5.3, and it

is in excellent agreement with the decoherence scheme (5.12).

Due to the exceptionally slow decoherence, we have to modify this picture if the initial

state is a symmetric superposition. In this case the decoherence time is so long that the

atomic coherent constituents of the initial state are also appreciably affected by the time

evolution until the decoherence time, td. The state of the atomic system at td will be a

mixture, which is the same as if the system had started from ρcl at t=0. In other words

the evolution follows the modified scheme:

|Ψ12〉〈Ψ12| → ρ̃cl(τ1, τ2, t) (5.14)

where the time dependent classical density matrix ρ̃cl(τ1, τ2, t) is the one which would

evolve from the statistical mixture (5.11) ρcl(τ1, τ2) = ρ̃cl(τ1, τ2, t = 0) according to the
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same master equation (5.2) as the actual atomic density matrix. The distance between

the time dependent classical density matrix, ρ̃cl and ρ(t) becomes negligible at td, and

asymptotically reaches zero for long times in the case of all the initial conditions.

5.5 Wigner functions of four component Schrödinger

cat states

The results of the previous section have shown that both the characteristic time and the

direction of the decoherence strongly depend on the initial conditions. Now we illustrate

this fact by tracking the decoherence of the superposition of four atomic coherent states

|Ψ1234〉 =
|τ1〉+ |τ2〉+ |τ3〉+ |τ4〉√
2(2 + Re

∑
i>k〈τi|τk〉)

. (5.15)

Since four points on the surface of a sphere are not distinguished with respect to each

other if and only if they are the vertices of a regular tetrahedron inscribed in the sphere,

we set the components of |Ψ1234〉 according to this pattern. On the other hand, the z axis

is distinguished in the present model because of the form of the Hamilton operator (5.1),

therefore we orient the tetrahedron with one edge parallel to the z axis and the opposite

edge parallel to the y axis, see Fig. 5.5. Although we have in principle two substantially

different ways of considering the state represented by Fig. 5.5 as the superposition of

two atomic Schrödinger-cat states, according to the results of the previous section one

expects that the environment naturally selects one of these possibilities via the different

time evolutions: the quantum coherence between the components of the symmetric pair

|Ψ12〉 ∝ |τ1〉 + |τ2〉 disappears slowly, while all the other pairs are rapidly decohering

superpositions.

We are going to visualize the decoherence process of |Ψ1234〉 by the aid of the spherical

Wigner function. It is a real function over the unit sphere (which is the appropriate phase

space in the present case) being in a linear one-to-one correspondence with the density

matrix of the atomic system, see Sec. 2.2.1. For previous applications of this function

see [100,63,106,107,108,109].
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Figure 5.5: Phase space scheme of the 4 component cat state. The atomic coherent states
constituting the superposition (5.15) are represented by the points labeled by τ1, . . . , τ4.
They are arranged to form the vertices of a tetrahedron as shown.

The Wigner function given by Eq. (2.14) suggestively maps the time evolution of the

state (5.15) onto the unit sphere, as shown in Fig. 5.6. We plot the Wigner functions

of the atomic system at three time instants, both as a polar plot and as a contour plot.

Dark shades mean negative, light shades mean positive function values. The four positive

lobes, pointing from the center to the vertices of the tetrahedron shown in Fig. 5.5,

correspond to the four atomic coherent states in (5.15). Due to the dissipation all these

lobes will move slowly downwards. The initial interference pattern (Figs. 5.6 a) and b))

has the regularity of the tetrahedron, there are equally pronounced oscillations along all

the edges, representing the quantum coherence between the coherent states.

Figs. 5.6 c) and d) depict the situation after a time which is short in the sense that the

the shapes of the lobes of the coherent states are not appreciably affected (no dissipation),

but the interference is already negligible between them, except for the single pair along

the vertical edge of the tetrahedron. As it is seen from Fig. 5.5 this is the pair which

represented initially the symmetric atomic Schrödinger-cat state ∝ |τ1〉 + |τ2〉 in (5.15).

The coherence between the components of this pair of states is nearly unaffected as shown

by the strong oscillations.
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A qualitatively different stage of the time evolution is shown in Figs. 5.6 e) and f)

at a later time. The coherent constituents are already affected by the dissipation, the

uppermost one rather strongly, but the quantum coherence between the components of

the symmetric pair is still present. On the contrary, the interference between all the other

components has already disappeared.

In view of the present results, if the initial state of the atomic system is a superposition

of coherent states so that there are symmetric pairs of coherent states in the expansion,

then the coherence between the components of these symmetric pairs will survive much

longer than between any other terms.

5.6 Conclusions

We have investigated the decoherence of superpositions of macroscopically distinct quan-

tum states in a system of two-level atoms embedded in the environment of thermal photon

modes. Utilizing the Schmidt decomposition and the linear entropy, we have shown that

atomic coherent states are robust against decoherence, both at zero and non-zero tem-

peratures. This result is in analogy with the harmonic oscillator case and justifies the

definition of atomic Schrödinger cat states as superpositions of atomic coherent states.

By solving the master equation (5.2) we have identified two different regimes of the

time evolution with the help of the linear entropy. The first one is dominated by deco-

herence while the second one is governed by dissipation. Based on several computational

runs focusing on the characteristic times it was found that td decreases much faster than

tdiss as the function of the number of atoms, N . Consequently td becomes many orders

of magnitude smaller than the characteristic time of dissipation for macroscopic sam-

ples, and even for e.g. N = 500 atoms and an average photon number of n = 1 the

ratio tdiss/td is around a few hundred depending on the initial conditions. However, there

are very important exceptional cases, called slow decoherence, when the atomic coherent

states constituting the initial atomic Schrödinger cat state are symmetric with respect to

the equator of the Bloch sphere.

Using a new measure D, we have shown that at the characteristic time of decoherence

61



TWO-LEVEL ATOMS AND DECOHERENCE

-1

0

1

x -0.5

0

0.5

y

-0.5

0

0.5

z

-1

0

1

x

(a)

τ 1

τ 2

τ 3

τ 4

0 π/2 π 3π/2 2π
ϕ

π

π
−−
2

0

θ

(b)

-1

-0.5

0

0.5

x
-0.5

-0.25

0

0.25

0.5

y

-0.5

-0.25

0

0.25

z

-1

-0.5

0

0.5

x

(c)

0 π/2 π 3π/2 2π
ϕ

π

π
−−
2

0

θ

(d)

-0.75

-0.5

-0.25

0

0.25

x

-0.5

-0.25

0

0.25

0.5

y

-0.75

-0.5

-0.25

0

z

-0.75

-0.5

-0.25

0

0.25

x

(e)

0 π/2 π 3π/2 2π
ϕ

π

π
−−
2

0

θ

(f)

Figure 5.6: Wigner view of the decoherence of the 4 component cat state (5.15). We plot
the spherical Wigner function (2.14) both as a polar plot [a), c), e)] and as a contour plot
[b), d), f)]. A polar plot is obtained by measuring the absolute value of the function in
the corresponding direction, and the resulting surface is shown in light where the values
of the Wigner function are positive, and in dark where they are negative. Similarly, light
shades of the contour plot correspond to positive function values. Plots a) and b) show
the initial state and in a) the lobes corresponding to the initial coherent constituents
are also labeled according to Fig. 5.5. Plots c), d) and e), f) show the spherical Wigner
function at t = 0.015/γ and t = 0.04/γ, respectively.
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the system is always very close to the state described by the time dependent classical

density matrix. Apart from the exceptional case of slow decoherence, the coherent states

appearing in (5.10) are approximate pointer states. When due to its symmetry the initial

cat state is a long-lived superposition, also its constituent coherent states have time to

transform into mixtures until td. We have given a modified scheme of decoherence which

is valid also for slow decoherence.

We have demonstrated the important difference between rapid and slow decoherence

by tracking the time evolution of a four component superposition with the help of the

spherical Wigner function. The initial interference pattern having the symmetry of a

tetrahedron rapidly disappears except for the single slowly decohering pair.
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Chapter 6

Preparation of decoherence-free,

subradiant states in a cavity

Decoherence is a difficulty to overcome in the context of QC. Quantum error correction

codes [110] offer a possibility for this purpose. A somewhat different approach relies on a

specific decoherence-free subspace (DFS) [96, 111, 112]. This idea is essentially a passive

error correction scheme: quantum operations are restricted to the DFS in which all the

quantum superpositions are much less fragile than in subspaces strongly coupled to the

unavoidably present environment.

Subradiant states of a system of two-level atoms [105, 113, 114, 115, 116] has recently

gained wide attention because of their exceptionally slow decoherence. This stability of

quantum superpositions inside the subradiant subspaces originates from the low probabil-

ity of photon emission, which means very weak interaction between the atoms and their

environment. Hence the subradiant states span a DFS in the atomic Hilbert-space. We

note that there are proposals that intend to perform QC within this DFS [112].

Here we propose a scheme that can be used to prepare subradiant states in a cavity.

Our method is based on second order perturbation theory but the exact results verify the

validity of the perturbative approach [11]. We also investigate to what extent our scheme

is independent of the state of the cavity field. The analysis of the conditions shows that

this scheme is feasible with present day techniques achieved in atom cavity interaction

experiments [117,28,118,119].
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6.1 Description of the system

We investigate a system of N identical two-level atoms in a single mode cavity. Each

individual atom is equivalent to a spin-1/2 system, and the whole atomic ensemble can

be described by the aid of collective atomic operators J+, J− and Jz obeying the same

algebra as the usual angular momentum operators [105]. We consider the following model

Hamiltonian:

H = H0 + V = h̄ωaJz + h̄ωca
†a+ h̄g

(
a†J− + aJ+

)
, (6.1)

where a and a† are the annihilation and creation operators of the cavity mode, ωa is the

transition frequency between the two atomic energy levels, ωc denotes the frequency of

the cavity mode, different from ωa, and g is the coupling constant. We note that the

Hamiltonian (6.1) is written in the framework of Dicke’s theory, i.e., with the assumption

that all the atoms are subjected to the same field, which is a good approximation when

the size of the atomic sample is small compared to the wavelength of the cavity mode.

As discussed later in detail, there are experimental situations where this requirement is

fulfilled. Our proposed scheme for preparing subradiant states involves a detuned cavity.

We shall assume that the detuning is much larger than the resonant Rabi frequency:

ωc − ωa = ∆ � g. (6.2)

Now any state of the atomic system and the cavity field can be expanded as a linear

combination of the eigenstates of H0. These are tensorial products of collective atomic

states and number states of the field: |j,m, λ〉 ⊗ |n〉, where the indices j,m and λ label

the atomic state (also called Dicke state [14]), while n refers to the n-th Fock state

of the mode. The quantum number j corresponds to the eigenvalues of the operator

J2 = J2
z + (J+J− + J−J+)/2. This index is in one-to-one correspondence with the Young

diagram [120] that describes the permutation symmetry of the state. The possible values

of j are N/2, N/2 − 1, . . . , the smallest value being 0 if N is even and 1/2 if N is odd.

The index m of the |j,m, λ〉 Dicke state labels the eigenstates of the collective atomic

operator Jz, that is essentially proportional to the energy of the atomic subsystem. This
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Figure 6.1: Dicke ladders for N = 4 atoms. Each line corresponds to a collective atomic
state, the subradiant states are emphasized by thick lines. The circle denotes the 4-fold
degenerate first excited level. The first column corresponds to the completely symmetric
subspace.

is the index that is decreased (increased) by one under the action of the operator J− (J+):

J−|j,m, λ〉 =
√
j(j + 1)−m(m− 1)|j,m− 1, λ〉, (6.3)

including the case when m = −j, when the result is the zero vector. The states with

m = −j are the lowest ones of the Dicke ladders [105], they are called subradiant, because

they have no dipole coupling to other lower lying states, see Fig. 6.1 for the case of N = 4.

Finally the index λ distinguishes states with the same j and m. For more details see

Refs. [105,8, 120,14,121,122,63].

Besides the collective atomic states |j,m, λ〉, we shall also use the natural basis that

assigns a well defined state to each individual atom. These vectors will be labeled by a

string of 0-s and 1-s corresponding to the ground and excited sates, respectively. E. g.,

the ground state of the atomic subsystem is written in this basis as |
1

0
2

0 . . .
N

0〉; this state

(as well as the fully excited one) is also an element of the Dicke basis, |00 . . . 0〉 = |j =

N/2,m = −N/2, λ = 1〉.

6.2 Preparation of subradiant states

The form of the Hamiltonian (6.1) implies that the time evolution of the system shall

exhibit two time scales: The first characteristic time is due to the self-Hamiltonian H0

and is approximately 2π/ωa (or 2π/ωc) and the second is proportional to 2π/g. Gener-
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ally g � ωa ≈ ωc and the faster process induced by H0 can be eliminated by going into

an interaction picture. However, if the frequency difference ∆ is large enough, then the

energy transfer between two adjacent eigenstates of H0, differing in only one photon num-

ber, becomes negligible. This means that the amplitude of the corresponding collective

Rabi oscillations will be very small, that is, the process on the second time scale will be

unnoticeable and even slower mechanisms will become apparent. In this section we are

going to show that this situation, which is similar to the one considered in Refs. [123]

and [124], gives rise to the preparation of subradiant states.

Hereafter we shall focus on the solution of the Schrödinger equation in the case when

just a single atom is excited at t = 0. This initial state can be prepared by starting from

the state |00 . . . 0〉, and exciting one well defined control atom. This excitation can be

achieved via a third much higher lying level, so that the wavelength of the addressing

pulse allows to focus it on the desired target atom [125]. For the sake of simplicity we

always consider the control atom as being the first, hence the initial state will be written

as

|φ(0)〉 = |100 . . . 0〉 ⊗ |n− 1〉. (6.4)

In order to find the complete analytical solution of the Schrödinger equation induced

by the Hamiltonian (6.1), in principle one should calculate all the eigenvalues and the cor-

responding eigenstates of H. Although this problem can be solved analytically [126], more

insight is given by a simple perturbative approach. The exact nonperturbative numerical

solution of the Schrödinger equation verifies that results obtained via perturbation theory

yield excellent approximations, see section 6.3.

The state

|1〉 ≡

(
1√
N

N∑
k=1

|0 . . . 0
k

1 0 . . . 0〉

)
⊗ |n− 1〉 =

= |j = N/2,m = −N/2 + 1, λ = 1〉 ⊗ |n− 1〉, (6.5)

which is in the completely symmetric subspace, and the subradiant states:

|i〉 ≡ |j = N/2− 1,m = −N/2 + 1, λ = i− 1〉 ⊗ |n− 1〉 (6.6)
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with i = 2, 3...N , have the same unperturbed energy, they span the N -fold degenerate

eigensubspace of H0 corresponding to the eigenvalue E0(n) = h̄(nωc−Nωa/2)− h̄∆. For

the case of N = 4, the atomic part of the states |i〉 is denoted by a circle in Fig. 6.1.

It can be seen that first order degenerate perturbation theory is not giving any correc-

tion to the energy, because all the matrix elements of V between the states above vanish:

The action of V on vectors |j,m, λ〉⊗|n−1〉 gives a linear combination of |j,m−1, λ〉⊗|n〉

and |j,m+1, λ〉⊗|n−2〉 that are orthogonal to the states (6.5) and (6.6). In order to obtain

nonzero energy corrections we have to perform a second order degenerate perturbation

calculation [127], and find the eigenvalues of the matrix:

∑
m

〈i|V |m〉〈m|V |k〉
E0(n)− E0

m

, (6.7)

where the sum runs over all eigenstates of H0 with eigenvalue E0
m 6= E0(n). The only

nonvanishing energy corrections in second order are the following:

δE1 = h̄
g2

∆
(Nn− 2N − 2n+ 2),

δEi = δE1 + h̄N
g2

∆
, i = 2, 3 . . . N. (6.8)

At this point we can formulate the requirements that assure the validity of the per-

turbation theory: the magnitude of δE1 and δEi must be much smaller than h̄|∆|, the

minimum of the difference between E0(n) and all other unperturbed energy levels.

The most important consequence of Eqs. (6.8) is that the Bohr frequencies that de-

termine the time dependences of the subradiant and non-subradiant states are different.

Now we expand the initial state (6.4) as the linear combination of the fully symmetric

(non-subradiant) state |1〉, and an appropriate subradiant state:

|2〉 =
1√

N(N − 1)

[
(N − 1)|100 . . . 0〉 −

N∑
k=2

|0 . . . 0
k

1 0 . . . 0〉
]
⊗ |n− 1〉. (6.9)

By assigning the symbol |2〉 to the state in Eq. (6.9), we have utilized the freedom of
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choosing a basis in the subradiant subspace. Now the initial state reads

|φ(0)〉 =
1√
N
|1〉+

√
N − 1

N
|2〉. (6.10)

By the aid of this expansion and using the Bohr frequencies resulting from (6.8), it is easy

to calculate the time evolution of the state (6.10). Discarding an overall phase factor, this

time dependent state has the form

|φ(t)〉 =
1√
N

exp

(
iN

g2

∆
t

)
|1〉+

√
N − 1

N
|2〉, (6.11)

or, on using Eqs. (6.5) and (6.9):

|φ(t)〉 =
[
(N cos(αt)− i(N − 2) sin(αt)) |100 . . . 0〉

+2i sin(αt)
∑
k=2

|0 . . . 010 . . . 0〉
]
⊗ |n− 1〉/N. (6.12)

Here we introduced the parameter

α =
Ng2

2∆
, (6.13)

which is independent of n. Because of this latter fact, from now on the state of the cavity

field will be omitted in the notation. We also note that the characteristic time of the

time evolution, 2π/α, is much longer than that of the free evolution due to H0, being the

consequence of the fact that the evolution described in Eq. (6.11) is induced by a weak,

nonresonant interaction.

Eq. (6.12) reveals that in |φ(t)〉 the weight of the state |100 . . . 0〉 and those of the

states with the first atom unexcited changes during the course of time. As we can see,

the moduli of the corresponding coefficients in Eq. (6.12) are

√
N2 cos2(αt) + (N − 2)2 sin2(αt)

N
and

2| sin(αt)|
N

,

respectively. Comparing these values to Eq (6.9), it can be shown that for arbitrary N ,
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there exists a time instant tm when

|φ(t)〉 =
1√

N(N − 1)

[
(N − 1)eiϕ|100 . . . 0〉 −

N∑
k=2

|0 . . . 0
k

1 0 . . . 0〉
]
, (6.14)

which differs from the subradiant state |2〉 only in the phase factor eiϕ of the first term.

Combination of the previous two equations and Eq. (6.9) yields the following requirement

for tm: √
N2 cos2(αtm) + (N − 2)2 sin2(αtm)

|2 sin(αtm)|
= N − 1. (6.15)

We can find a solution of this equation for all N > 1:

sinαtm =
√
N/(4N − 4), (6.16)

and also obtain cosϕ = N−2
2N−2

in Eq. (6.14).

Now it is clear that at the time instant given by Eq (6.16), an appropriate rapid change

in the phase of the state |100 . . . 0〉 relatively to all other states |0 . . . 0
k

1 0 . . . 0〉 leads to

the subradiant state |2〉.

On the other hand, Eq. (6.14) also shows that the required phase transformation is

equivalent to the elimination of the phase difference ϕ between the |1〉c excited and |0〉c
ground state of the control atom. Therefore we consider the action of a strong laser pulse

on the control atom. In order to obtain precise addressing [125], the laser is to be tuned in

resonance with an allowed transition |1〉c → |e〉c, where |e〉c denotes a state of the control

atom with much higher energy than |1〉c. E. g., by the appropriate choice of the phase of

the complex Rabi frequencies of two π pulses leads to the phase transformation required

to prepare the subradiant state |2〉. Additionally, the duration of a Rabi period due to

the strong, resonant laser pulse is much shorter than the characteristic time that governs

the time evolution (6.11). We note that the idea of introducing phase transformation in

a multilevel system by the aid of short laser pulses has appeared in a somewhat different

context in [128].
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Now we show that our scheme is independent of the state of the cavity field, and write

more generally the initial state as:

|φ(0)〉 = |100 . . . 0〉 ⊗ |ψ(t)〉 = |100 . . . 0〉 ⊗
∑

n

cn(t)|n〉. (6.17)

We use the fact that the interaction Hamiltonian V does not mix states with different

number of excitation (essentially n+m):

〈j,m, λ| ⊗ 〈n|V |n′〉 ⊗ |j,m± 1, λ〉 = 0, (6.18)

unless n′ = n∓ 1. This implies that the calculations based on second order perturbation

theory can be performed for each N -fold degenerate energy level of H0 corresponding to

different values of n. After replacing the state |n− 1〉 with |ψ(t)〉 in Eqs. (6.5) and (6.6),

we obtain the following result:

δEi − δE1 =
g2

∆
N
∑

n

|cn|2 = 2α, (6.19)

which is therefore also valid in this general case. Thus we have proven that our scheme

does not require special preparation of the cavity field.

6.3 Comparison with experiments

Although the results above can be checked analytically, the scheme is based on second

order perturbation theory. Clearly, there are well defined conditions limiting the validity

of the perturbative approach and the applicability of this scheme. Now we are going

to analyze these conditions in comparison with recent experimental results. As we shall

see, present day experimental techniques allow for the preparation of decoherence-free,

subradiant states in the proposed way.

The time instants tm (and the whole time evolution) is found to be independent from

the cavity field within the framework of our perturbative approach. However, we must

require the energy corrections given by Eqs. (6.8) to be much less than h̄|∆|, which is the
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minimal difference between the eigenvalues of H0. According to Eqs. (6.8), this can be

achieved if the condition
g

∆

√
N � 1 (6.20)

holds, and the average number of photons in the cavity field, n, is not too large. By

cooling the apparatus and sending a train of absorbing atoms through the cavity before the

experiment takes place [129], average photon numbers n� 1 can be achieved. Therefore

until the relation (6.20) holds, the perturbative approach is valid.

In the following we shall compare the requirements of our proposal with the parameters

of the atom-cavity experiments of Haroche and co-workers. First of all, as discussed in

the review paper [99], the interaction of a number of Rydberg atoms with a single mode

cavity is truly described in the framework of the Dicke model. In more recent experiments

the time evolution of an entangled state of the cavity field and an atom [28] and also the

entangled state of two atoms [129] has been found to be in agreement with theoretical

predictions. From our point of view, Ref. [129] is of special interest, because our proposal

is essentially the generalization (with an additional phase transformation) of the two-atom

experiment described in that paper to N atoms. In the experiment the atoms emitted by

two single atom sources propagate with different velocities and collide inside the cavity.

It is possible to apply classical RF pulses on the outgoing atoms independently in order to

analyze the final state of the collision process. In our scheme such RF pulses can perform

the desired single qubit phase operation and consequently prepare a subradiant state.

In order to investigate the effect of the increasing number of atoms on the applicability

of our method we solve numerically the Schrödinger equation induced by the Hamiltonian

(6.1) and compare this exact time evolution with the perturbative one. The realistic

parameters [28] g/2π ≈ 24kHz and maximal detunings ∆/2π ≈ 800kHz show that the

relation (6.20) holds as much as for about hundred atoms. However, it is easy to see

that the smallest value of tm increases as the left hand side of Eq. (6.20) decreases, and

tm must clearly be shorter than the interaction time which has the order of magnitude

of 10µs [28]. To elucidate the trade-off between this requirement and the validity of the

perturbative method, we calculate the minimal tm value for different number of atoms.

We use the above realistic value of the coupling constant and choose ∆/2π = 720kHz,
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thus ∆/g = 30. The resulting graph is shown in Fig. 6.2, where the shortest tm is plotted

versus the number of atoms, N . In the numerical calculation tm is defined as the time

instant when the distance (in the sense of the norm naturally connected to the usual

inner product) between the current state and the state given by Eq. (6.14) is minimal.

With the parameters above the agreement between the numerical and the perturbative
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Figure 6.2: The shortest tm values (introduced by Eq. (6.14)) as a function of the number
of atoms. Open circles denote the values calculated numerically while crosses correspond
to the perturbative approximation, see Eq. (6.16).

results is convincing, this minimal distance is small, less than 0.04. The validity of the

perturbative approach can also be seen by comparing the values of tm obtained in the two

different ways.

The most interesting property of Fig. 6.2 is that tm(N) is a decreasing function.

This means that once our scheme is implemented with two atoms, the interaction time

stipulates no additional conditions on the case of more atoms. Concerning the numerical

values appearing in the figure, the conclusion is that the condition ∆/g = 30 is too strict

in the sense that tm(2) is longer than the interaction time reported in [129]. The effects

predicted by perturbation theory can also be observed in the case of a weaker condition.

Indeed, based on the agreement of theoretical and experimental results, Ref. [129] draws

the limit of the perturbative regime at ∆/g > 3.
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6.4 Conclusions

We have proposed a method to prepare decoherence-free, subradiant states of a mul-

tiatomic system. We also compared the theoretical requirements with the parameters of

existing experimental setups and found that the proposed scheme is feasible with presently

available experimental techniques.
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Summary

The phenomenon that is called decoherence and the correspondence with classical me-

chanics is a fundamental question in the quantum theory since the 1930s. Nowadays, due

to the rapid development of experimental techniques, it is possible to investigate the mech-

anisms of decoherence also in laboratories. Controlled number of ions in a trap [29, 125],

single Rydberg atoms traversing a cavity [129] or EPR pairs of polarized photons [130]

can shed new light on long-lived theoretical questions. Besides this principal importance,

state of the art experiments in this field offer possibilities for practical applications as

well. Quantum cryptography protocols have already been implemented, and there is a

hope also for quantum computation to turn into reality. All these facts underline the im-

portance of understanding the role of highly nonclassical quantum states and the process

of decoherence in the field of quantum optics.

In this work the focus was on concrete quantum systems, and the related theoretical

models were based on the approach of the environment induced decoherence. That is, we

assumed that the reason for the emergence of classical properties in a quantum system is

the interaction with the environment. An overview of this concept was given in Chap. 1,

and Chap. 2 dealt with the mathematical methods that are used to treat open quantum

systems. The most important properties of the Wigner functions that are relevant from

our point of view have also been given, because these functions are found to visualize

decoherence in an instructive way. In Part II of the thesis we presented our own results

that are summarized as follows:



SUMMARY

Molecular wave packets in an anharmonic potential

The realistic vibrational potential energy of a diatomic molecule in a given electronic state

can be approximated by the Morse potential. First we investigated the time evolution of

wave packets in this anharmonic potential without the influence of the environment. For

small oscillations, the behavior of the wave packets are similar to the harmonic case, but

when anharmonicity plays an important role, peculiar quantum effects can be observed.

The Wigner function of the system shows that in this case there are certain stages of the

time evolution when the vibrational state of the molecule can be considered as a highly

nonclassical Schrödinger-cat state: it is the superposition of two other states that are well

localized in the phase space.

Decoherence of molecular wave packets

The highly nonclassical Schrödinger-cat states that spontaneously form in the Morse po-

tential provide the motivation for the study of the decoherence in a diatomic molecule. We

introduced a model where the environment is represented by a set of harmonic oscillators

and took into account that the rate of an environment induced transition depends on the

involved Bohr frequencies, which are different for different transitions. This model led to

a master equation, the final, steady-state solution of which represents thermal equilibrium

with the environment. On the time scale of dissipation decoherence is a very fast process,

and the time instant when decoherence dominated time evolution turns into dissipation

dominated dynamics, naturally defines the characteristic time of the decoherence. The

behavior of the entropy of the molecular system reflects the separation of the two time

scales and allows us to determine the decoherence time for different initial wave packets.

We found that keeping all other parameters fixed, decoherence becomes faster by increas-

ing the diameter of the a phase space orbit corresponding to the wave packet. It has also

been demonstrated that decoherence follows a general scheme in this case, it drives the

molecule into the classical mixture of states that are localized along the corresponding

classical phase space orbit. This scheme is valid not only for the case of wave packets as

initial states, but also for energy eigenstates.
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Two-level atoms and decoherence

A system of two-level atoms provides a model in which the microscopic → macroscopic

(mesoscopic) transition is straightforward: it means the simple increase of the number of

the atoms in the ensemble. In this system, starting from superposition of atomic coherent

states as initial states, we have shown that the decoherence time can be determined in

a way similar to the case of a diatomic molecule: The behavior of the linear entropy

changes its character around the decoherence time. The uncertainty of this operational

definition decreases when we increase the number of the atoms. We have found that

certain superpositions of atomic coherent states, the so-called symmetric Schrödinger-cat

states, exhibit exceptionally slow decoherence. We introduced a decoherence scheme that

is able to describe the time evolution of these symmetric states as well.

Preparing decoherence-free states

The presence of a cavity around two-level atoms modifies the mode structure of the

electromagnetic field surrounding the atoms, and the spontaneous emission rate can be

different from that of in free space. The system consisting of the cavity field and the atoms

is coupled to the environment also in this case. In order to avoid the decoherence of the

atomic state, we introduced a method that can prepare subradiant states in a cavity.

These states have recently gained wide attention, because the interaction of the cavity

field and the atoms in a subradiant state is negligible, therefore cavity losses do not lead to

the decoherence of the atomic state. Therefore the subradiant states span a decoherence-

free subspace, which can be important from the viewpoint of quantum computation. Our

method for preparing decoherence-free atomic states is based on the natural time evolution

of the atomic system in the cavity, and requires the individual manipulation of an initially

chosen control atom. The analysis of the experimental requirements of our scheme shows

that it can be implemented with present day cavity QED setups.
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Összefoglalás

A kvantummechanika kapcsolata a klasszikus mechanikával olyan kérdés, amely a kvan-

tumelmélet kialakulása óta a figyelem középpontjában áll. A dekoherencia fogalma az-

zal a tapasztalattal áll összefüggésben, hogy mindennapi környezetünkben — amelyet

leginkább a makroszkopikus jelzővel ı́rhatunk le — nem találjuk jelét a kvantummechani-

kában alapvető szuperpoźıció elvének. Ez az ellentét Schrödinger h́ıres gondolatḱısérlete

nyomán [1,2] akkor a legszembeszökőbb, amikor klasszikusan értelmezhető és jól megkülön-

böztethető állapotok (mint egy élő és kimúlt macska) kvantummechanikai szuperpoźıcióját

tekintjük. Ezek az erősen nemklasszikus, ún. Schrödinger-macska állapotok kvantum-

mechanikailag megengedettek, mı́g egy klasszikus világban, éppen a kvantummechanikára

jellemző szuperpoźıciós elv hiánya miatt, ilyen állapotok nem fordulhatnak elő .

Mivel a legtöbb kvantumállapot rendelkezik bizonyos, klasszikus szemmel nézve meg-

lepő tulajdonsággal, ezért gyakran használják a nemklasszikus jelzőt. A Schrödinger-

macska állapotok olyannyira ellentmondanak a világról alkotott klasszikus képünknek,

hogy túlzás nélkül megkülönböztethetjük őket az erősen nemklasszikus elnevezéssel. A mi

szempontunkból egy kvantumállapot (erősen) nemklasszikus volta azzal függ össze, hogy

az állapot Wigner függvénye negat́ıv értékeket is felvesz.

A környezet által előidézett dekoherencia elmélete, amely az 1970-es évektől kezdődően

fejlődött ki, azon alapul, hogy a kvantummechanika univerzálisan érvényes, helyesen ı́rja

le nemcsak a mikro-részecskék, hanem a makroszkopikus testek viselkedését is, mindenféle

korlátozás nélkül [38, 17]. Ennek az elméletnek a főbb vonásit az 1. fejezetben foglaltuk

össze. Az alapvető kérdés, ami ebben az esetben nyilvánvalóan felmerül, arra vonatkozik,

hogyan lehetséges klasszikus tulajdonságok megjelenése egy olyan rendszerben, ahol min-

dent a kvantummechanika szabályai iránýıtanak. A ma leginkább elfogadott elmélet
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ezzel a problémával kapcsolatban azt hangsúlyozza, hogy a (kvantummechanikai) rend-

szerek sohasem lehetnek tökéletesen zártak, mindig csatolódnak — ha mégoly gyengén

is — a környezetükhöz. A környezettel való kölcsönhatás óhatatlanul befolyásolja az

általunk vizsgált rendszert, jellemzően az történik, hogy összefonódott rendszer-környezet

állapotok jönnek létre, amelyekhez már csak globálisan rendelhető hozzá egy kvantum-

mechanikai tiszta állapot. Ebből a nézőpontból a dekoherencia mint dinamikai folyamat

nem más, mint a rendszer nemklasszikus kvantumállapotainak igen gyors delokalizációja,

azaz összefonódása a környezettel, ami lokálisan (azaz pusztán a rendszerre koncentrálva)

a nemklasszikus állapotok eltűnéseként jelentkezik.

Ismerve a környezet és az általunk vizsgált rendszer közötti kölcsönhatást, meghatároz-

ható, hogy melyek a rendszernek azok az állapotai, amelyek a leglassabban vesźıtik el

jellemző tulajdonságaikat, legstabilabbak a környezet hatásaival szemben. Az ismert

eredmények azt mutatják, hogy ezek a stabil állapotok klasszikusan jól értelmezhetőek,

nem rendelkeznek olyan tulajdonságokkal, amelyek a mindennapi tapasztalattal ellentéte-

sek. Szuperpoźıcióik azonban kifejezetten rövid életűek, ı́gy a dekoherencia eredménye a

stabil állapotok klasszikus keveréke lesz. Ezen állapotok meghatározása tehát alapvetően

fontos; egy adott kvantumrendszerben seǵıtségükkel állaṕıthatjuk meg a dekoherencia

irányát, azaz válaszolhatunk arra a kérdésre, hogy adott kezdeti kvantumállapot esetén

mely klasszikus állapotok jelenhetnek meg.

A ḱısérleti módszerek gyors fejlődésének köszönhetően a dekoherencia oka és dinamiká-

ja ma már laboratóriumi körülmények között is megfigyelhető. Lehetséges például üregre-

zonátor állapotait [129], összefonódott polarizációs állapotú fotonokat [130], vagy akár

egyetlen csapdázott iont is [29, 125] vizsgálni ebből a szempontból. A kvantumos szu-

perpoźıciók eltűnésének a mind mélyebb megértése azonban akár praktikus haszonnal is

járhat. A kvantumos információ technológia egy fiatal, de gyorsan fejlődő tudományterület,

ahol a dekoherencia elsősorban mint akadály merül fel: a kvantumos algoritmusok klasszi-

kusan utolérhetetlen ereje pontosan az információt tároló, szálĺıtó és feldolgozó objek-

tumok kvantumos természetében rejlik [5]. Amennyiben a dekoherencia hatására az ezen

objektumok állapotai közötti kvantummechanikai interferencia eltűnik, akkor használha-

tatlanokká is válnak mint egy kvantumszámı́tógép lényegi alkatrészei. Ezért kulcsfontossá-
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gú lehet olyan, ún. dekoherencia-mentes állapotoknak az alkalmazása, amelyek nemcsak

önmaguk stabilak a környezet hatásaival szemben, de szuperpoźıcióik is elegendően hosszú

életűek a gyakorlati alkalmazás szempontjából.

A vizsgálatok alapvetően a környezettel kölcsönható kvantumrendszerek léırására hasz-

nálatos módszereken alapulnak, amelyek közül azokat, amelyeket a dolgozatban alkalmaz-

tunk, a 2. fejezetben foglaltuk össze. Ahhoz, hogy pusztán a minket érdeklő rendszer-

re tudjunk koncentrálni, szükséges egyfajta átlagolást végeznünk a környezet lehetséges

állapotaira. Azzal az esettel foglalkozunk, amikor a környezeten belüli relaxáció időállan-

dója sokkal rövidebb a vizsgált rendszer folyamatainak a karakterisztikus idejénél. Ebben

az úgynevezett Markov-féle esetben levezethető egy mester egyenletnek nevezett diffe-

renciálegyenlet, amely léırja a rendszer időfejlődését anélkül, hogy a környezet állapotát

részletesen figyelembe kellene vennünk [51, 114]. Különböző kezdeti állapotok esetén a

rövid távú időfejlődést figyelembe véve analitikus módon következtethetünk az adott

állapot stabilitására. A mester egyenlet tetszőleges időpillanatig történő megoldását nu-

merikus integrálással kapjuk. Nyomon követhetjük, hogyan fonódik össze a környezet

és a rendszer állapota megfelelően választott mennyiségek, például az entrópia, időről

időre történő kiértékelésével. A vizsgált rendszer Wigner függvénye amellett, hogy jól

szemlélteti a dekoherencia folyamatát, arra is alkalmas, hogy seǵıtségével meghatároz-

zuk, hogy a vizsgált rendszer állapota mennyire tekinthető klasszikusnak [63].

Az eddig léırtak szolgáltatták a motivációt ahhoz, hogy konkrét kvantumrendszerek

vizsgálatát tűzzük ki célul a környezet által előidézett dekoherencia elméletének a kereté-

ben. Saját eredményeinket a dolgozat II. részében ismertettük. Az egyik választott fizikai

rendszer egy rezgő kétatomos molekula volt, ahol a magok potenciális energiája távolságuk

anharmonikus függvénye. A 5. és 6. fejezetekben pedig két energiaszinttel léırható atomok

rendszerét vizsgáltuk, ami a kvantumos információtechnológia szempontjából fontos. A

dekoherencia irányának a meghatározása mindkét esetben mélyebb betekintést nyújt ezen

nýılt rendszerek viselkedésébe, mint a puszta numerikus eredmények. A dekoherencia

karakterisztikus idejének a meghatározása megmutatja, melyek azok az állapotok, ame-

lyek a leginkább ellenállnak a környezet hatásainak, ami gyakorlati szempontból is érdekes.

A kvantumos szuperpoźıciók eltűnése mellett a környezettel való energiacsere is egy olyan
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folyamat, amely a legtöbb nýılt kvantumrendszerben lejátszódik. A dekoherencia és az

energia-disszipáció kapcsolatának a vizsgálatát mindkét rendszer esetében elvégeztük. Az

ily módon nyert tapasztalatainkat felhasználva javaslatot tettünk egy olyan eljárásra,

amely ma elérhető ḱısérleti berendezésekkel megvalóśıtható és képes a kvantumos in-

formációfeldolgozás szempontjából fontos dekoherencia-mentes állapotokat előálĺıtani. A

dolgozat II. részében ismertetett saját eredményeink a következőképpen foglalhatók össze:

Hullámcsomagok egy kétatomos molekula anharmonikus potenciáljában

Egy kétatomos molekula vibrációs potenciálja egy adott elektronállapotban jól közeĺıthető

Morse potenciállal. Elsőként azzal az esettel foglalkoztunk, amikor a környezet nem be-

folyásolja a dinamikát, és olyan hullámcsomagok időfejlődését vizsgáltuk, amelyek kezdet-

ben jól lokalizáltak. Kis amplitúdójú oszcillációkra a hullámcsomagok viselkedése hasonló

a harmonikus esethez, ha azonban a potenciál anharmonikus volta fontossá válik, jel-

legzetesen kvantumos jelenségek figyelhetők meg. A rendszer Wigner függvénye azt mu-

tatja, hogy vannak az időfejlődésnek olyan szakaszai, amikor a molekula vibrációs állapota

Schrödinger-macskának tekinthető. Ezek az erősen nemklasszikus állapotok ebben az e-

setben két, a fázistéren jól lokalizált állapot szuperpoźıciói.

Egy kétatomos molekula hullámcsomagjainak dekoherenciája

Kétatomos molekulák esetén a vibrációs hullámcsomagok dekoherenciájának a vizsgálatát

az motiválta, hogy ebben az esetben spontán módon keletkeznek erősen nemklasszikus,

Schrödinger-macska állapotok. Bevezettünk egy modellt, amelyben a környezet har-

monikus oszcillátorokból áll, és figyelembe vettük azt a tényt is, hogy a környezet által

előidézett átmenetek gyakorisága függ az átmenethez tartozó Bohr frekvenciától, ami

pedig nem ugyanaz minden átmenet esetében. Modellünk egy mester egyenlethez vezetett,

amelynek az egyensúlyi megoldása a környezettel való termikus egyensúlyt jelent. Ezen

egyenlet seǵıtségével vizsgáltuk az időfejlődést és azt találtuk, hogy az energia-disszipáció

időskáláján a dekoherencia egy igen gyors folyamat. Az az időpillanat, amikor a deko-

herencia uralta időfejlődés átadja a helyét a lassú disszipációnak, természetes módon

definiálja a dekoherencia karakterisztikus idejét. A molekula entrópiájának időbeli le-
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futása jól tükrözi a két időskála különbözőségét, ı́gy seǵıtségével meghatározhatjuk a deko-

herenciaidőt különböző kezdeti hullámcsomagokra. Ha minden más paramétert változat-

lanul hagyunk, akkor a dekoherencia annál gyorsabb, minél nagyobb amplitúdójú a rezgés.

Azt is megmutattuk, hogy a dekoherencia ebben az esetben egy általános sémát követ,

eredménye a kezdeti állapottól függetlenül olyan állapotok keveréke lesz, amelyek a meg-

felelő klasszikus részecske fázistrajektóriája mentén lokalizáltak.

Dekoherencia kétállapotú atomok rendszerében

Az azonos kétállapotú atomok rendszere egy olyan modell, amelynek megvan az a jó tu-

lajdonsága, hogy a mikroszkopikus tartományból a makroszkopikus felé irányuló átmenet

is vizsgálható, mégpedig az atomok számának puszta növelésével. Ezzel a rendszerrel

kapcsolatban megmutattuk, hogy atomi koherens állapotok szuperpoźıcióból kiindulva a

dekoherenciaidő a kétatomos molekulák esetéhez igen hasonlóan definiálható: A lineáris

entrópia, mint az idő függvénye, megváltoztatja a jellegét a dekoherenciaidő környékén.

Ez a defińıció annál pontosabb, minél több atomból áll a rendszer. A dekoherenciaidőt ily

módon számolva megmutattuk, hogy atomi koherens állapotok bizonyos szuperpoźıciói

kiugróan lassú dekoherenciát mutatnak. Megadtunk egy olyan sémát, amely érvényes

ezen úgynevezett szimmetrikus Schrödinger-macska állapotok időfejlődésére is.

Dekoherencia-mentes állapotok előálĺıtása

Kétállapotú atomok rendszerét körülvevő üregrezonátor megváltoztatja az atomokkal

kölcsönható elektromágneses tér módusstruktúráját, ı́gy a spontán emisszió valósźınűsége

is különbözik attól az esettől, amikor szabad sugárzási térben találhatók az atomok. Az

atomok és az üregrezonátor módusai alkotta kvantumrendszer természetesen ebben az e-

setben is kölcsönhat a környezettel, például úgy, hogy fotonok szöknek meg a módusokból.

Annak érdekében, hogy elkerüljük az atomi rendszer dekoherenciáját, javasoltunk egy

módszert, amely alkalmas úgynevezett szubradiáns állapotok előálĺıtására ebben a rend-

szerben. Az utóbbi időben jelentős figyelem összpontosult ezekre az állapotokra, mert

ha az atomi rendszer szubradiáns állapotban van, akkor kölcsönhatása a rezonátor elek-

tromágneses terével gyakorlatilag elhanyagolható. Ez azt is jelenti, hogy a rezonátor
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veszteségei nem vezetnek az atomi rendszer dekoherenciájához, azaz a szubradiáns állapo-

tok dekoherencia-mentes alteret fesźıtenek ki. Eljárásunk a rezonátorban lévő atomok

természetes időfejlődése mellett még azt használja ki, hogy lehetséges egyetlen, előre

kiválasztott atom állapotát kontrollálni. Ezeknek a feltételeknek a vizsgálata azt mutatja,

hogy ma már léteznek olyan ḱısérleti berendezések, amelyekkel eljárásunk megvalóśıtható.
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[3] O. Hadjar, P. Földi, R. Hoekstra et al., Phys. Rev. Lett. 84, 4076 (2000).

[4] M. Arndt, O. Nairz, J. Voss-Andreae et al., Nature 401, 680 (1999).

[5] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum infor-
mation (Cambridge Univ. Press, Cambridge, 2000).

[6] P. Földi, M. G. Benedict and A. Czirják, Acta. Phys. Slov. 48, 335 (1998).
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[10] P. Földi, A. Czirják, B. Molnár et al., Opt. Express 10, 376 (2002).
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