Bevezetés az anyagtudományba

VI. előadás

2010. március 11.

Két komponensű eutektikus rendszerek

Eutektikum ≡ (*eutektos*(g)=könnyen olvadó) az a két komponensű keverék, mely jól meghatározott minimális olvadásponttal rendelkezik.

Az Pb-Sn eutektikus rendszer I.

• 150°C-on a 40 m/m% Sn-t tartalmazó ötvözetünk

-- mely fázisokból áll? α + β

Az Pb-Sn eutektikus rendszer II.

Mikroszerkezetek eutektikus rendszerekben

Pl. az Sn-Pb rendszerben 4 tartományt érdemes megvizsgálni

- I. 0 m/m% < c_{Sn} < ~2 m/m% ~99 m/m% < c_{Sn} < 100 m/m%
- II. ~2 m/m% < c_{Sn} < 18.3 m/m% 97.8 m/m% < c_{Sn} < ~99 m/m%
- III. c_{Sn} = 61.9 m/m%
- IV. 18.3 m/m% < c_{Sn} < 61.9 m/m% 61.9 m/m% < c_{Sn} < 97.8 m/m%

Mikroszerkezetek eutektikus rendszerekben I.

- *C*_o < 2 m/m% Sn
- A hűtés eredménye:
 --α szemcsékből álló polikristály azaz 1 db szilárd fázis.

Mikroszerkezetek eutektikus rendszerekben II.

Mikroszerkezetek eutektikus rendszerekben III.

- $C_o = C_E$
- A hűtés eredménye: Eutektikus mikroszerkezet ≡ α és β kristályok váltakozó lemezei.

Lemezes eutektikus szerkezet

Azért lemezes struktúra jön létre, mert így csak rövid távolságra kell az elemeknek diffundálnia.

VI/9

Mikroszerkezetek eutektikus rendszerekben IV.

- 18.3 m/m% Sn < C_o < 61.9 m/m% Sn
- A hűtés eredménye: α kristályok és eutektikus mikroszerkezet

Ha az elemek vegyületet alkotnak

A vegyületek egy függőleges vonalat alkotnak (s nem területet) mivel az összetételük (sztoichiometriájuk) adott.

3 fázist érintő invariáns átalakulások

- Eutektikus folyadék van egyensúlyban két szilárd fázissal $L \stackrel{hűtés}{\underbrace{\tilde{f}}$ $\alpha + \beta$
- Eutektoid szilárd fázis van egyensúlyban két szilárd fázissal

Peritektikus - folyadék + szilárd₁ → szilárd₂

$$S_1 + L \iff S_2$$

$$\delta + L \stackrel{\text{hűtés}}{\text{fűtés}} \gamma \qquad (1493^{\circ}\text{C})$$

A fázisdiagramok kísérleti meghatározása I.

 Különböző összetételű olvadékok hülési görbéinek mérésével. E módszer továbbfejlesztése a differenciális termális analízis (DTA), melynél a hülési viselkedést egy alkalmasan választott referencia minta hülési jellemzőihez viszonvítva mérjük.

A fázisdiagramok kísérleti meghatározása II.

- A mikroszerkezet mikroszkópos megfigyelésével (polírozott minták felszínén a fázisok maratással tehetők láthatóvá, eutektikus rendszerekre működik jól)
- Röntgen diffrakció: a különböző kristálytani orientációjú fázisok mellett – a rácsállandók mérése révén – kiválóan alkalmas a szilárd oldatok oldhatóságának (egyébként igen körülményes) meghatározására is.

Hasznos linkek

Fázisdiagramok + sematikus mikroszerkezetek

<u>http://www.soton.ac.uk/~pasr1/index.htm</u>

Érdekességek fázisdiagramokról, metallurgiáról

<u>http://www.msm.cam.ac.uk/phase-trans/</u>

VI/17

Mechanikai tulajdonságok

- Az anyagok mechanikai viselkedése azt tükrözi, hogy milyen típusú és mértékű alakváltozással reagálnak a külső terhelésre.
- Fontos mechanikai jellemzők a teherbírás (szilárdság), alakíthatóság (duktilitás), a merevség és a keménység.
- A mechanikai tulajdonságokat befolyásoló tényezők: a terhelés természete (fajtája; eloszlása (egyenletes vagy lokális; időben állandó (sztatikus) vagy fluktuáló (dinamikus)), nagysága, időtartama, az anyag mikroszerkezete (fém, kerámia vagy műanyag; kristályos vagy polikristályos; ...), külső körülmények (hőmérséklet).
- Mi döntően a fémek és ötvözetek mechanikai tulajdonságaival foglalkozunk.

A külső hatás: terhelés → feszültségek

A feszültségek leggyakoribb fajtái

• Csavarási/torziós (a nyírás egy formája): meghajtó tengely

További alapvető feszültség típusok 1/2

• Egyszerű összenyomás:

VI/23

További alapvető feszültség típusok 2/2

• Kéttengelyű nyújtás: • Hidrosztatikai összenyomás:

Nyomás alatt levő palack

Feszültség-alakváltozás mérése

Lineáris rugalmas tulajdonságok

- Rugalmassági együttható vagy Young modulus, E:
- Hooke törvény:

Mikroszkópikus magyarázat

 A rugalmassági együttható a fémes kötés erősségétől függ

Poisson szám, v

13 Poisson szám, v: a kereszt-, illetve hosszirányú relatív alakváltozások hányadosának -1szerese $v = -\frac{\varepsilon_L}{c}$ 3 elméleti értéke 0.25-0.5 fémek: $v \sim 0.33$ kerámiák: $v \sim 0.25$ műanyagok: v ~ 0.40 Ha Mértékegységek: v > 0.50 a sűrűség nő [*E*] = GPa v < 0.50 a sűrűség csökken v: mértékegység nélküli VI/29

További rugalmas tulajdonságok

Young modulus: összehasonlítás

VI/31

Néhány hasznos összefüggés

 Az anyag, a geometria és a terhelés paraméterei egyaránt befolyásolják a deformációt.

• A nagyobb rugalmas állandó kisebb rugalmas deformációt jelent.