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The "“real” epitaxy

Epitaxy: extended single-crystal film formation on top of a crystalline substrate.
(L. Royer 1928)

Greek: epi (placed or resting upon) + taxis (arrangement)

Homoepitaxy
e when the film and the substrate are the same material
¢ (e.g. Si on Si; rationale: higher purity; more defect free; independent
control of doping)
Heteroepitaxy
e when the film and the substrate are composed of different materials

o film and substrate differ structurally, electronically and chemically,
e.g. metal-semiconductor systems

o film and substrate share common crystallography and electronic
structure, but has dissimilar chemistry, e.g. AlAs on GaAs

e more common than homoepitaxy; foster due to interest in
optoelectronics




Lattice misfit:
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Homoepitaxy
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parameters of the substrate
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FiLM

SUBSTRATE

f=0

|

11

B EBEGEE

f<0

T

gFr
9 8 B

pseudor|norphic

o i

MATCHED STRAINED RELAXED
Typical if the crystal structure of
substrate and film is the same.
— e’
-~
Heteroepitaxy

Some potential alignments

In heteroepitaxial systems where film and substrate differ chemically and
electronically, and may also differ structurally.

FILM

e.g. cubic film on a
cubic substrate

a

a [ SUBSTRATE

a2

Ca or Rb on (100) GaAs

a/2

Al or Ag on GaAs




Crystallographic notation

When no surface reconstruction is present a tetrad of indices is necessary to
unambigously define the aligned (epitaxial) geometry

meaning parallel

(HKL)//(hk1):[UVW]//[uvw]

' e
planes directions

where CAPITAL letters refer to FILM and
small cap letters refer to substrate

Two examples: FeSi, on Si
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The crystal structure of Si

(111) Si (100) Si

Silicon forms face-centered
(diamond) cubic crystal structure.

Rotate the unit cell at http://cst-www.nrl.navy.mil/lattice/struk.jmol/a4.html
and check how the (111) and (100) planes look or visualize the planes with
Surface Explorer (http://surfexp.fhi-berlin.mpg.de/)

Calculate the misfit!
Si is cubic: a=5.4314
B-FeSi, is orthorombic: a=9.86&, b=7.794, c=7.88A
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Defects in heteroepitaxy
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Heteroepitaxy proceeds along this route if no inter-
diffusion takes place between film and substrate.
W.D. Nix, Metall. Trans. 20A (1989) 2224
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Ge epilaver

Si substrate
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spontaneous island formation after 10ML coverage of Ge on Si (100)
(in-situ TEM, by Francis ROSS at IBM)

ijrd00489.pdf

SK growth of Ge on Si

The atomic distances in a Germanium crystal are larger than in Si(111). The resulting
mechanical stress leads to the formation of three dimensional Germanium islands. The
shape of the Germanium islands is a flat toped tetrahedron. Typical dimensions of the
islands are 700R base length and 80A height. Further analysis shows that the aspect
ratio of the islands indicates a transition from strained coherent islands (high aspect
ratio at low coverage) to relaxed islands with dislocations (lower aspect ratio at higher

coverage).

www.fz-juelich.de/ibn/IBN3 STM_Video/
Applied Physics Letters 63 (1993) 3055




Epitaxy of compound
semiconductors

The term heterojunction refers to the interface between two single-crystal
semiconductors of different composition and bandgap energy brought into
contact, not differing doping levels of the same semiconductor.

The possibility and quality of epitaxy is influenced by the following
properties:

Semiconductor nature (direct or indirect)
Bandgap energy
Lattice constant

- Thermal expansion coefficient N ENER?\/
Direct-bandgap semiconductor (e.g. GaAs, InP): g omecnl’

during carrier transition energy is conserved + no change in momentum YA-ENCEBAN
hole-electron recombination with photon emission is more probable c

= K
ELECTRON MOMENTUM
ENERGV..‘
Indirect-bandgap semiconductor (e.g. Ge, Si): 2 !
during carrier transition energy is conserved accompanied with a CONOUCTION

change in momentum, — a third party, i.e. the lattice must be

involved in the hole-electron recombination — emission is less
pro bable VALENCE BAND

£, (INDIRECT)
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D = direct; ] = indirect. (a) and (c) refer to the lattice constants of the hexagonal » phases.
From Refs. 11, 12, and M. S. Shur and M. A. Khan, MRS Bull. 22(2), 44 (1997).

direct — steeper
indirect — shallower




Lattice constant

To ensure defect-free interfaces in semiconductor film/substrate

heterostructures, it is essential that the lattice parameters (a,) of both be
closely matched. For optical devices, lattice mismatches of less than 0.1%
are sought.
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An exotic example

Graphoepitaxy:
Occurs when films deposit with a certain texture, e.g. (100).

On a flat surface this would result in
randomly oriented grains.
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amorphous substrate

When the lateral period of the
(substrate) surface structure
is smaller than the grain size
the orientation is preserved.

Films can be aligned even in the presence of a large misfit.
e.g. Al interconnect metallization of SiO,.

Film structure

Structure is the most influential property of both as-deposited and processed films. In
particular, controlling grain size, morphology and crystallinity are primary concerns.

Interestingly, similar structural morphologies cut across all material classes and the
different processing methods used to produce them.

Analogy between bulk phase transformation and film growth:

Bulk Film
Driving force supercooling supersaturation
below m.p. of vapor
Key parameter Tmold Tsubstrate

The influence of deposition variables on the structural features that develop in
physically deposited films has been universally depicted in terms of structure-zone
diagrams/models (SZDs or SZMs).




Film condensation processes

Condensation: incident atoms, bonded adatoms, surface diffusion,
trapping/desorption, bulk diffusion.

Basic processes:
shadowing (geometric constraint)
f iffusion . .
surface diffusio The activation energies of these processes

bulk diffusion scale directly with the melting point of the

desorption condensate, Ty.

The dominance of one or more of these processes, as a function of
substrate temperature, Tg, is manifested by different structural
morphologies.

SZM for evaporated films

300pm-2mm thick films
of metals and oxides
dep. rate 1.2-1.8uym/min

Zone 1 (T,/T, < 0.3)

columnar, inverted cone like units capped by domes and separated by several nm
wide (voided) boundaries (arise from shadowing effects and very limited adatom
motion). Sometimes the structure looks like a cauliflower.

Zone 2 (0.3 < TJ/T,,<0.45)

also columnar, but with tighter grain boundaries (~0.5nm) (surface and grain
boundary diffusion plays a role in the evolution of this structure, as the columnar
grain size increases with T¢/T,, in accord with the activation energies for the
relevant mass transport mechanisms)

Zone 3 (0.5 < T/T,)
equiaxed grains (bulk diffusion)

B.A. Movchan and A.V. Demchishin, "Study of the Structure and Properties of Thick Vacuum Condensates of Nickel,
Titanium, Tungsten, Aluminium Oxide and Zirconium Dioxide", Phys. Met. Metallogr. 28 (1969), pp. 83-90




SZM for sputtered films
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J.A. Thornton, Ann. Rev. Mater. Sci. 7 (1977) 239

Evaporated vs. sputtered

Structural

Zone T/ Tu characteristics Film properties

I(E) <03 Tapered crystals, dome tops, High dislocation density,

voided boundaries. hard.

1(S) <0.1 at 0.15Pa Voided boundaries, fibrous Hard.
to <0.5 at grains. Zone | is promoted
4 Pa by substrate roughness and

oblique deposition.

T(S) 0.1-0.4 at Fibrous grains, dense grain High dislocation density,
0.15 Pa, boundary arrays. hard. High strength,
0.4-0.5 at low ductility.

4 Pa
2(E) 0.3-0.5 Columnar grains, dense Hard, low ductility.

grain boundaries,
2(8) 04-0.7

3E) 0.5-1.0 Large equiaxed grains, Low dislocation density,
bright surface. soft recrystallized
grains.
3(S) 0.6-1.0

Note: (E) refers to evaporated, (S) refers to sputtered.

In general, analogous structures evolve at somewhat lower temperatures in evaporated
films than in sputtered ones.




The effect of particle energy

poa L0
100 v g
V, replaces P :
(not a surprise SUBSTRATE .
since V, varies BIAS VOLTAGE (V) 2 03 SUBSTRATE
inversely with P) 0701 TEMPERATURE (T/Tm) and many more minor
variable was studied
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tharmal avaporation
.
Ion beam assisted deposition
gas discharge sputiening
—— -
on beam sputiering

ion plating
pulsed laser deposition

R. Messier, A.P. Giri, and R. Roy, J. Vac. Sci. Technol. A2 (1984) 500

Columnar grain structure:
the tangent rule

Columnar structure is the most ubiquitous morphology. Moreover, magnetic, optical,
electrical, mechanical and surface properties of films are very much affected by columnar
structures. The structural similarities among varied materials, deposited in different ways
suggests common nucleation and growth mechanism for the columnar structure.

85°

Incoming direction of
Atoms or ions

Calumnar sfruclure

The columns are oriented towards the
vapor source. B is always smaller than .

With ion impact normal to the surface, adatoms
www.emsl.pnl.gov/new/highlights/200704/ receive additional randomized momentum in the film

plane. This may minimize or even eliminate column
tilting!




