Optical and Infrared Detectors for Astronomy

Basic Principles to State-of-the-art

James W. Beletic

NATO/ASI and Euro Summer School *Optics in Astrophysics* September 16-27, 2002

Goals of the Detector Course

The student should gain an understanding of:

- 3. The role detectors play in an astronomical observatory Why detectors are the MOST important technology!
- 2. Fundamental detector physics
- 3. Standard detector architecture
- 4. What affects quantum efficiency and readout noise
- 5. The state-of-the-art today
- 6. Special applications / areas of research & development

Course Outline

Lecture 1:

Role of detectors in observatory Detector physics Standard architecture

Lecture 2:

Quantum efficiency Readout noise Detector imperfections

Lecture 3:

Manufacturers Bigger devices / Mosaics Electronics Special applications Optical CMOS and CMOS + CCD

Course Outline

Lecture 1:

Role of detectors in observatory Detector physics Standard architecture

Optical and Infrared Astronomy (0.3 to 25 m)

Two basic parts

Telescope to collect and focus light

Optical and Infrared Astronomy (0.3 to 25 m)

Okay, maybe a bit more complicated – 4 basic parts

Telescope to collect and focus light

Instrument goal is to measure a 3-D data cube

But detectors are 2-dimensional !

Our detectors are BLACK &

Can not measure color, only intensity

So the optics of the instrument are used to map a portion of the 3-D data cube on to the 2-D detector

Where detectors are used in an observatory

Scientific: Imaging Spectroscopy

Technical: Acquisition / guiding Active optics Adaptive optics Interferometry (fringe & tip/tilt tracking) Site monitoring (seeing, clouds, LGS)

General: Surveillance Safety

Detector zoology

In this course, we concentrate on **2-D focal plane arrays**.

- Optical silicon-based (CCD, CMOS)
- Infrared IR material plus silicon CMOS multiplexer

Will not address: APD (avalanche photodiodes)

STJS (superconducting tunneling junctions)

The Ideal Detector

- Detect 100% of photons
- Each photon detected as a delta function
- Large number of pixels
- Time tag for each photon
- Measure photon wavelength
- Measure photon polarization

- ✓ Up to 99% quantum efficiency
- \checkmark One electron for each photon
- ✓ over 355 million pixels
- ☑ No framing detectors
- ☑ No defined by filter
- ☑ No defined by filter

Plus READOUT NOISE and other "features"

5 basic steps of optical/IR photon detection

- 1. Get light into the detector Anti-reflection coatings
- 2. Charge generation Popular materials: Silicon, HgCdTe, InSb
- 3. Charge collection
 - Electrical fields within the material collect photoelectrons into pixels.
- 4. Charge transfer

If infrared, no charge transfer required. For CCD, move photoelectrons to the edge where amplifiers are located.

5. Charge amplification & digitization

Amplification process is noisy. In general CCDs have lowest noise, CMOS and IR detectors have higher noise.

Quantum Efficiency
Point
Spread
Function

Take notice

- Optical and IR focal plane arrays are similar in many ways
 - I will combine information about optical and IR detectors as much as possible.
- But optical and IR detectors are different in some important ways
 - I will try to be careful to differentiate when necessary.
- Please ask if you are ever confused whether the subject is optical and/or IR detectors.

Step 1: Get light into the detector Anti-reflection coatings

• AR coatings will be discussed in lecture 2 when quantum efficiency is presented.

Step 2: Charge Generation

Silicon CCD Similar physics for IR materials

Silicon Lattice

Figure 1d. Filled state image of Sn on SiA11) surface with Vtip = 0.5 V and I=500 pA. It shows change of the apparent height of Sn atoms with varying neighboring defects of type A.

Silicon Lattice constant 0.543 **nm**

Step 2: Charge Generation Photon Detection

Tunable Bandgap A great property of Mer-Cad-Tel

$Hg_{1-x}Cd_{x}Te$

Modify ratio of Mercury and Cadmium to "tune" the bandgap energy

Х	E _g (eV)	_c (m)
0.196	.09	14
0.21	.12	10
0.295	.25	5
0.395	.41	3
0.55	.73	1.7
0.7	1.0	1.24

Step 2: Charge Generation Photon Detection

Silicon	Si	1.12	1.1	163 - 300
Mer-Cad-Tel	HgCdTe	1.00 – 0.09	1.24 – 14	20 - 80
Indium Antimonide	InSb	0.23	5.9	30
Arsenic doped Silicon	Si:As	0.05	24	4

How small is an electron-volt (eV)?

 $1 \text{ eV} = 1.6 \cdot 10^{-19} \text{ J}$

 $1 J = N \cdot m = kg \cdot m \cdot sec^{-2} \cdot m$

 $1 \text{ kg raised 1 meter} = 9.8 \text{ J} = 6.1 \cdot 10^{19} \text{ eV}$

How small is an electron-volt (eV) ? DEIMOS example

DEIMOS – Deep Extragalactic Imager & Multi-Object Spectrograph

- 8K x 8K CCD array 67 million pixels
- If 100 images / night, then ~13.5 Gbyte/night
- If used 1/3 of the year & all nights clear, 1.65 Tbyte/year
- If average pixel contains 5,000 photoelectrons

4.1 • 10¹⁵ photoelectons / year

4.6 • 10¹⁵ eV / year

Single peanut M&M candy (2 g) falling 15 cm (6 inches) loses potential energy equal to 1.85 • 10¹⁶ eV, same as total bandgap energy from <u>four</u> years of <u>heavy</u> DEIMOS use.

Step 3: Charge Collection

- Intensity image is generated by collecting photoelectrons generated in 3-D volume into 2-D array of pixels.
- Optical and IR focal plane arrays both collect charges via electric fields.
- In the z-direction, optical and IR use a p-n junction to "sweep" charge toward pixel collection nodes.

Photovoltaic Detector Potential Well

Silicon CCD & HgCdTe and InSb are photovoltaic detectors. They use a pn junction to generate E-field in the z-direction of each pixel. This electric field separates the electron-hole pairs generated by a photon.

For silicon

n – region from phosphorous doping

> p – region from boron doping

<u>n-channel CCD</u> collects electrons

<u>p-channel CCD</u> collect holes

Step 3: Charge Collection

- Optical and IR focal plane arrays are different for charge collection in the x and y dimensions.
- IR collect charge at each pixel and have amplifiers and readout multiplexer
- CCD collect charge in array of pixels. At end of frame, move charge to edge of array where one (or more) amplifier (s) read out the pixels.

Infrared Pixel Geometry

Infrared Detector Cross-section (InSb example)

Infrared Detector Cross-section (new Rockwell HgCdTe design)

CCD Architecture

CCD Pixel Architecture – column boundaries

1 H Hydrogen																	2 He Helium
1.0 3 Li Lithium	4 Be Beryllium											5 B Boron	6 Carbon	7 N Nitrogen	8 O Onygen	9 F Fluorine	4.0 10 Ne Neon
0.9 11 Na Sodium 23.0	12 12 Mg Magnesium 9.0											13 Al Auminum 27.0	12.0 14 Silicon 28.1	15 P Phosphorus 31.0	16.0 16 Sultur 32.1	17 Cl Chlorine 35.5	18 Ar Argon 40.0
19 K Potassium 39.1	20 Ca Calcium 40.2	21 Sc Scandium 45.0	22 Ti Titanium 47.9	23 V Vanadium 50.9	24 Cr Chromium 52.0	25 Mn Manganese 54.9	26 Fe Iron 55.9	27 Co Colbalt 58.9	28 Ni Nickel 58.7	29 Cu Copper 63.5	30 Zn Zno 65.4	31 Gallium 69.7	32 Ge Germanium 72.6	33 As Arsenic 74.9	34 Se Selenium 79.0	35 Br Bromine 79.9	36 Kr Kripton 83.8
37 Rb Rubidium 85.5	38 Sr Strontium 87.6	39 Y Yittrium 88.9	40 Zr Zirconium 91.2	41 Nb Nobium 92.9	42 Mo Molybdenum 95.9	43 Tc Technetium 99	44 Ru Ruthenium 101.0	45 Rh Rhodium 102.9	46 Pd Palladium 106.4	47 Ag Silver 107.9	48 Cd Cadmium 112.4	49 In hdium 114.8	50 Sn Tin 118.7	51 Sb Antimony 121.8	52 Te Tellurium 127.6	53 	54 Xe Xen on 131.3
Caesium 132.9	66 Ba Barium 137.4	89-103	72 Hf Hathium 178.5	73 Ta Tantalum 181.0	74 W Tung <i>s</i> ten 183.9	75 Re Rhenium 186.2	76 Os 0smium 190.2	// Ir hidium 192.2	78 Pt Platinum 195.1	79 Au _{Gold} 197.0	BU Hg Mercury 200.6	81 Tl Thallium 204.4	82 Pb Lead 207.2	83 Bi Bismuth 209.0	Polonium 210.0	Astatine 210.0	Radon 222.0
Francium 223.0	Ra Radium 226.0		Ritherfordium 261	Dubnium 262	Seaborgium 263	Bh Bohrium 262	Hs Hassium 265	Mt Meitnerium 266	Ununnilium 272							pes of Elemer kalimetak	<u>ds Key:</u>
																kaline earth n ansition meta	netak k
																mthanides : tinides	
57 La Lanthanum	58 Ce Cerium	59 Pr Prase odym lum	60 Nd Neodymium	61 Pm Promethium	62 Sm Samarium	63 Eu Europium	64 Gd Gadolinium	65 Tb Terbium	66 Dy Dysprosium	67 Ho Holmium	68 Er Brbium	69 Tm Thulium	70 Yb Merbium	71 Lu Lutetium	- Pe	oor metak mi-metak	
89 Ac Atinium 132.9	90 Th Thorium 232.0	91 Pa Protactinium 231.0	92 Uranium 238.0	93 Np Neptunium 237.0	94 Pu Plutonium 242.0	95 Am Americium 243.0	96 Cm Curium 247.0	97 Bk Berkelium 247.0	98 Cf Calitomium 251.0	99 Es Ensteinium 254.0	100 Fm Fermium 253.0	101 Md Mendelevium 256.0	102 No Nobelium 254.0	103 Lr Lawrencium 257.0	и	on-metak oble gases	

1 H Hydrogen																	2 He Helium
1.0 3 Li	Be											B	ċ	, N	ů	۴	4.0 10 Ne
Lithium 6.9 11	Beryllium 9.0 12											Boron 10.8 13	Carbon 12.0 14	Nitrogen 14.0 15	0xygen 16.0 16	Fluorine 19.0 17	Neon 20.2 18
Na	Мg											Â	Si	P	Ŝ	ĈI	Är
Sodium 23.0	Magnesium 9.0											Aluminum 27.0	Silicon 28.1	Phosphorus 31.0	Sulfur 32.1	Chlorine 35.5	Argon 40.0
19 K	Ca	SC	22 Ti	23 V		25 Mn	²⁶ Fe		28 Ni	29 Cu	30 7n	Ga	Ge	33 As	³⁴ Se	Br	³⁶ Kr
Potassium 39.1	Calcium 40.2	Scandium 45.0	Titanium 47.9	vanadium 50.9	Chromium	Manganese 54.9	Iron 55.9	Colbait 58.9	Nickel 58.7	Copper 63.5	Zinc 65.4	Gallium 69.7	Germanium 72 B	Arsenic 74.9	Selenium 79.0	Bromine 79.9	Kripton 83.8
37 DL	38	39	40	41	42 00 -	43	44 D	45 DL	46 D.J	47 • •	48	49	50	51 CL	52	53	54 X -
Rubidium	ال ا Strontium	T Yittrium	Zr Zrconium	Nobium	IVIO Molybdenum	IC Technetium	KU Ruthenium	KN Rhodium	Palladium	Ag Silver	Cadmium	I N Indium	5n ™	3D Antimony	I E Tellurium	lodine	Xe Xen on
85.5 55	87.6 56	88.9 57-71	91.2 72	92.9 73	95.9 74	99 75	101.0 76	102.9 77	106.4 78	<u>107.9</u> 79	112.4 80	114.8 81	118.7 82	121.8 83	127.6 84	126.9 85	131.3 86
Cs	Ba		Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Caesium 132.9	Barium 137.4		Hafnium 178.5	Tantalum 181.0	Tung <i>s</i> ten 183.9	Rhenium 186.2	Osmium 190.2	lidium 192.2	Platinum 195.1	Gold 197.0	Mercury 200.6	Thallium 204.4	Lead 207.2	Bismuth 209.0	Polonium 210.0	Astatine 210.0	Radon 222.0
Fr	Ra	89-103	Rf	105 Db	Sa	Bh	¹⁰⁸ Hs	109 Mt	Uun								
Francium 223.0	Radium 226.0		Ritierfordium 261	Dubnium 262	Seaborgium 263	Bohrium 262	Has sium 265	Meitnerium 266	Ununnilium 272						Ty	pes of Elemer	<u>ts Key:</u>
220.0	220.0														A	kalimetak	
															A	lkaline earth n	netak
															n 🗆 🖬	ransition meta	k
															L:	anthanides	
											_		-		A 🗌 A	c tiniiles	
⁵⁷ La	⁵⁸ Ce	⁵⁹ Pr	⁶⁰ Nd	⁶¹ Pm	⁶² Sm	Eu	64 Gd	⁶⁵ Tb	⁶⁶ Dy	⁶⁷ Ho	Er	Tm	70 Yb	⁷¹ Lu	p	oor metak	
Lanthanum 138.9	Cerium 140.1	Prase odym lum 140.9	Neodymium 144.2	Promethium 147.0	Samarium 150.4	Europium 152.0	Gadolinium 157.3	Terbium 158.9	Dysprosium 162.5	Holmium 164.9	Erbium 167.3	Thulium 168.9	Ntterbium 173.0	Lutetium 175.0	s s	emi-metak	
Ac	⁹⁰ Th	Pa	92 U	93 Np	94 Pu	Am	⁹⁶ Cm	97 Bk	⁹⁸ Cf	⁹⁹ Es	¹⁰⁰	¹⁰¹	102 No	103 Lr	и 📃 и	on-metak	
Actinium 132.9	Thorium 232.0	Protactinium 231.0	Uranium 238.0	Neptunium 237.0	Plutonium 242.0	Americium 243.0	Curium 247.0	Berkelium 247.0	Californium 251.0	En <i>s</i> teinium 254.0	Fermium 253.0	Mendelevium 256.0	Nobelium 254.0	Lawrencium 257.0	и 🗌	oble gases	

											He Helium 4.0
						5	6	7	8	9	10
						В	С	N	0	F	Ne
						Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
						10.8	12.0	14.0	16.0	19.0	20.2
						13 A I	14	15 P	16		18
						AI	SI	Р	5	CI	Ar
						Auminum 27.0	Silicon 28.1	Phosphorus 31.0	Sultur 32.1	Chlorine 35.5	Atgon 40.0
	26	27	28	29	30	31	32	33	34	35	36
וו	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
ese	iron 55.9	Colbalt 58.9	Nickel 58.7	Copper 63.5	⊠nc 65.4	Gallium 69.7	Germanium 72.6	Arsenic 74.9	Selenium 79.0	Bromine 79.9	Kripton 83.8
	44	45	46	47	48	49	50	51	52	53	54
L F	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
um	Ruthenium 101.0	Rhodium 102.9	Palladium 106.4	Silver 107.9	Cadmium 112.4	Indium 114.8	Tin 118.7	Antimony 121.8	Tellurium 127.6	bdine 126.9	Xen on 131.3
	76	77	78	79	80	81	82	83	84	85	86
ý	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
m 2	0smium 190.2	lidium 192.2	Platinum 195.1	Gold 197.0	Mercury 200.6	Thallium 204.4	Lead 207.2	Bismuth 209.0	Polonium 210.0	Astatine 210.0	Radon 222.0
	108	109	110								•
1	Hs	Mt	Uun								
П	Has sium 285	Meitnerium 288	Ununnilium 272						Ty	pes of Elemer	<u>ts Key:</u>
									A A	kalimetak	

2

											He Helium 4.0
						5	6	7	8	9	10
						в	С	N	0	F	Ne
						Boron 10.8	Carbon 12.0	Nitrogen 14.0	Orgen 16.0	Fluorine 19.0	Neon 20.2
						13	14	15	16	17	18
						AI	Si	Р	S	CI	Ar
						Aluminum 27.0	Silicon 28.1	Phosphorus 31.0	Sultur 32.1	Chlorine 35.5	Atgon 40.0
	26	27	28	29	30	31	32	33	34	35	36
1	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
ese	iron 55.9	Colbalt 58.9	Nickel 58.7	Copper 63.5	⊠nc 65.4	Gallium 69.7	Germanium 72.6	Arsenic 74.9	Selenium 79.0	Bromine 79.9	Kripton 83.8
	44	45	46	47	48	49	50	51	52	53	54
L F	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
um	Ruthenium 101.0	Rhodium 102.9	Palladium 106.4	Silver 107.9	Cadmium 112.4	Indium 114.8	Tin 118.7	Antimony 121.8	Tellurium 127.6	bdine 126.9	Xen on 131.3
	76	77	78	79	80	81	82	83	84	85	86
è	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
т 2	0smium 190.2	hidium 192.2	Platinum 195.1	Gold 197.0	Mercury 200.6	Thallium 204.4	Lead 207.2	Bismuth 209.0	Polonium 210.0	Astatine 210.0	Radon 222.0
	108	109	110								
וו	Hs	Mt	Uun								
П	Has sium 265	Meitnerium 266	Ununnilium 272							pes of Elemer	<u>as Key:</u>
									A A	<u>kalimetak</u>	

2

CCD Pixel Architecture – column boundaries

											He
											Helium
						5	6	7	8	8	4.0 10
						Ď	ċ	Ň	Ň	Ē	No
										.	INC
						Boron 40.0	Carbon	Nitrogen	Oxygen 46.0	Fluorine	Neon
						10.0	12.0	14.0	10.0	19.0	
						Â	Si	P	Š	ĊI	Är
						Auminum	Sili∞n	- Phosphorus	Sultur	Chlorine	Argon
						27.0	28.1	31.0	32.1	35.5	40.0
	26	27	28	29	30	31	32	33	34	35	36
1	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
ese	ton	Colbait	Nickel	Copper	Zinc	Gallium	Germanium	Arsenio	Selenium	Bromine	Kripton
	55.9	58.9 45	58.7	63.5 47	65.4 40	69.7	72.6	74.9 54	79.0 50	79.9	83.8 <i>5</i> 4
	44 m	40	40	4/ 	48	49	50	01 A	0Z	93	94 N
L 7	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	le		Xe
um	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	bdine	Xenon
	101.0	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
	76	77	78	79	80	81	82	83	84	85 • .	86
)	Os	Ir	Pt	Au	Hq		Pb	Bi	Po	At	Rn
m	0smium	hidium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	210.0	210.0	222.0
	108	109	110								
1	Hs	Mt	Uun								
П	Hassium	Meitnerium	Ununnilium						<u> </u>	pes of Elemer	ds Key:
	265	266	272								

Alkalimetak

2

For silicon

n – region from phosphorous doping

> p – region from boron doping

<u>n-channel CCD</u> collects electrons

<u>p-channel CCD</u> collect holes

CCD Pixel Architecture – parallel phases

Step 4: Charge transfer

- IR detectors have amplifier at each pixel, so no need for charge transfer.
- CCDs must move charge across the focal plane array to the readout amplifier.

CCD Architecture

CCD Charge transfer The good, the bad & the ugly

- "Bad & ugly" aspects of charge transfer
 - Takes time
 - Can blur image if no shutter used
 - Can lose / blur charge during move
 - Can bleed charge from saturated pixel up/down column
 - Can have a blocked column
 - Can have a hot pixel that releases charge into all passing pixels
- "Good" aspects of charge transfer
 - Can bin charge "on-chip" noiseless process
 - Can charge shift for tip/tilt correction or to eliminate systematic errors ("va-et-vient", "nod-and-shuffle")
 - Can build special purpose designs that integrate different areas depending on application (curvature wavefront sensing, Shack-Hartmann laser guide star wavefront sensing)
 - Can do drift scanning
 - Have space to build a great low noise amplifier !

CCD Timing

Rain bucket analogy

CCD Architecture

Step 5: Charge amplification

- Similar for CCDs and IR detectors.
- Both use MOSFETs (metal-oxide-silicon field effect transistors) to amplify the signal.
- Show CCD amplifier first and then relate to IR pixel.

CCD – Serial register and amplifier

FOR SITE type anplifier :
$$4 \times 25 \,\mu m$$
 gate, $\frac{1}{2} \,\mu m$ thick, 10^{20} doping
 $3 \times 10 \,\mu m$ Al strap, $\frac{1}{2} \,\mu n$ thick
Capacitance (gate) $\approx 100 \,\text{fF}$, $1\mu \text{N/c}^-$
 $\sim 5 \times 10^9 \,\mu \text{osphorous}$ "donor" atoms on the gate
 $\sim 10^{12} \,\text{conduction}$ band electrons on the Al strap
 $\sim 6 \times 10^6 \,\text{electrons}$ renoved to bias to $\pm 9 \text{V}$
GATE
SOURCE
 $\Lambda^+ \, \sim \, \rho$
 $F_{Fg} + Bund channel MOSFET with source and drain edges separated
from the gate
Add 1 electron to the sense node and the flow of
current under the MOSFET gate is reduced by
 $300 \,\text{million}$ per second !$

MOSFET symbols

Amplifier Responsivity (SITe example)

> Q = CV V = Q / C

Capacitance of MOSFET = 10^{-13} F (100 fF) Responsivity of amplifier = 1.6 V / e⁻

More recent amplifier designs have higher responsivity, 5 – 10 V/e⁻, which give lower noise, but less dynamic range. Research is being done on 50 xx amplifier designs which may lead to sub-electron read noise.

Infrared Detector Cross-section (InSb example)

IR multiplexer pixel architecture

IR multiplexer pixel architecture

IR multiplexer pixel architecture

Review of Lecture 1

5 basic steps of optical/IR photon detection

