WE-PAR2-B Fluorescence V: Probes, labelling, Bio Applications II (Room B, 2021.03.31.)
15:10-15:25: Anti-Stokes Fluorescence Microscopy with Alexa Fluor 568. T. Gajdos, M. Erdélyi(University of Szeged, Department of Optics and Quantumelectronics, Hungary)
October 26, 2020Tamás GajdospublicationComments Off on Syndecan-4 Modulates Cell Polarity and Migration by Influencing Centrosome Positioning and Intracellular Calcium Distribution
In collaboration with the Muscle Adaptation Group, we have published a new paper in Frontiers in Cell and Developmental Biology. Our join research venture studied the regeneration process in the tissue on a molecular level.
Becsky, Daniel, et al. “Syndecan-4 Modulates Cell Polarity and Migration by Influencing Centrosome Positioning and Intracellular Calcium Distribution.” Frontiers in Cell and Developmental Biology (2020).
Hot-band absorption and anti-Stokes emission properties of an organic fluorescent dye, Alexa Fluor 568, were characterized and compared with those of Rhodamine 101. The comparison of the properties (e.g., quantum efficiency, spectral distribution, thermal properties, and fluorescence lifetime) between the two dyes confirms that both dyes undergo the same process when excited in the red spectral region. Possible undesirable crosstalk effects and applications in dSTORM microscopy were demonstrated and discussed.
Gajdos, T., Hopp, B. & Erdélyi, M. Hot-Band Anti-Stokes Fluorescence Properties of Alexa Fluor 568. J Fluoresc (2020). doi: 10.1007/s10895-020-02496-0
Sarcomeres are extremely highly ordered macromolecular assemblies where structural organization is intimately linked to their functionality as contractile units. Although the structural basis of actin and Myosin interaction is revealed at a quasiatomic resolution, much less is known about the molecular organization of the I-band and H-zone. We report the development of a powerful nanoscopic approach, combined with a structure-averaging algorithm, that allowed us to determine the position of 27 sarcomeric proteins in Drosophila melanogaster flight muscles with a quasimolecular, ∼5- to 10-nm localization precision. With this protein localization atlas and template-based protein structure modeling, we have assembled refined I-band and H-zone models with unparalleled scope and resolution. In addition, we found that actin regulatory proteins of the H-zone are organized into two distinct layers, suggesting that the major place of thin filament assembly is an M-line–centered narrow domain where short actin oligomers can form and subsequently anneal to the pointed end.
Nanoscopy reveals the layered organization of the sarcomeric H-zone and I-band complexes – Szilárd Szikora, Tamás Gajdos, Tibor Novák, Dávid Farkas, István Földi, Peter Lenart, Miklós Erdélyi, József Mihály
July 1, 2019Tamás GajdospublicationComments Off on Quantification of DNA damage induced repair focus formation via super-resolution dSTORM localization microscopy
… based on our new analysis method, we were able to show the number of nucleosomes in each nanofocus that could allow us to define the possible chromatin structure and the nucleosome density around the break sites. This method is one of the first demonstration of a single-cell based quantitative measurement of a discrete repair focus, which could provide new opportunities to categorize spatial organization of nanofoci by parametric determination of topological similarity.
Poster Session 2 (Tuesday, April 16, 17.50–19.05):
P2-A/10 Multimodal Localization Microscopy with Efficient Photon Collection – T. Gajdos, Zs. Cserteg, Sz. Szikora, J. Mihály, B. B. H. Kovács, T. Novák, M. Erdélyi (University of Szeged, Hungary)
P2-C/12 Quantification of DNA Double-Strand Breaks via STORM Localization Microscopy – D. Varga, H. Majoros, Zs. Újfaludi, T. Pankotai, M. Erdélyi (University of Szeged, Hungary)
We have initiated an annual meeting for super-resoultion microscope users in Hungary. The first symposium will take place at University of Szeged, on 8th March 2019.
The preliminary program is built around the major super-resolution techniques and their applications. After the talks the participants can visit multiple microscope laboratories in Szeged. Bring your own samples!
Super-resolution localization microscopy provides a powerful tool to study biochemical mechanisms at single molecule level. Although the lateral position of the fluorescent dye molecules can be determined routinely with high precision, measurement of other modalities such as 3D and multicolor without the degradation of the original super-resolved image is still in the focus. In this paper a dual-objective multimodal single molecule localization microscopy (SMLM) technique has been developed, optimized and tested. The proposed optical arrangement can be implemented onto a conventional inverted microscope without serious system modification. Read more
Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.
To find out more, including how to control cookies, see here:
Cookie Policy
You must be logged in to post a comment.